~ AD=A111 590 CLARKSON COLL OF TECHNOLOSY POTSDAM NY F/6 17/9
ANALYSIS OF THE POLARIZATION DEPENDENCE OF THE INTERACTION BETW==ETC(U)
NOV 81 M R RAEMER 3060!'75-6-010
UNCLASSIFIED RADC=TR=81~244

e




."

)

"" 1O &0 f2 |

=i
.y 4

e

s

il e

S
O

MICROCOPY RESOLUTION TEST CriART
NATIONAL BUREAU Of STANDARDS.1963-A



il I

=)
o
o)
P
P~
-~
L~

RADCTR-81.244
- Final Technical Report

. AND RADIO FREQUENCY SENSOR

4

e

November 1981

DEPENDENCE OF THE INTERACTION
BETWEEN HUMAN FRAME TARGETS

-

FIELDS DTIC

M ELECTEM '
Q. MARO 3 1982

E

Clarkson College of Technology

Hareld R. Raemer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This effort was sponsored by the Defense Nuclear Agency

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344}




-

Ty
»

"~y

This report bas been reviewed by the BADC Public Affairs Office (PA) snd
is releassble to the National Technical Information Service (NTIS). At NTIS &
it will be releasable to the general public, including foreign nationms.

RADC-TR-81-244 has been reviewed and is approved for publication.

mmmwkt_ V. Karaa

NICHOLAS V. KARAS
Project Engineer

APPROVED: é/&“ é,’ «/éid,c,c’ (\

ALLAN C. SCHELL
Chief, Electromagnetic Sciences Division

2o S

FOR THE COMMANDER: %ﬁ A4

JONN P. HUSS -
Acting Chief, Plans Office g

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organisatiom,
please notify RADC (EEC ) Hanscom AFB MA 01731. This will assist us in
saintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

»

M . T L . Ty e, v N 5~v'\1.1x"‘ A e )




] UNCLASSIFIED

SECURITY CLASSIFICATION QF THIS PAGE (WAen Data Entered)

e e T i — 1

_ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
s . REPO NUMBER 2. GOVY ACCESSION NQ.[ 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-81-244
4. TITLE (and Subtitie) Sl-?iTV'i <14 Rll:ORT & PERMOD COVERED
ANALYSIS OF THE POLARIZATION DEPENDENCE OF THE | gipe" Tochnical Report
INTERACTION BETWEEN HUMAN FRAME TARGETS AND y 4
RADIO FREQUENCY SENSOR FIELDS § FEAFORMING OG. REPORT nuMSER
N/A
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERNS) ]
' "
Harold R. Raemer F30602-78-C-0102 i
3. PERFORMING ONGANIZATION NAME AND ADDAESS 10. ::ggR.Azoan‘::slnftuzauo'J!sg;, TASK
. Clarkson College of Technology 627134
Potsdam NY 13676 DNARO215
11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE 1
Deputy for Electronic Technology (RADC/EEC) E°:§$ﬁi2F£3%%s
‘ Hanscom AFB MA 01731 275
1 T4, MONITORING AGENCY NAME & ADORKSS(!f dl;;u-n trom Coﬂtroﬁhu Otfice) 13. SECURITY CLASS. (of this report)
UNCLASSIFIED
Same
TSa. gsﬁussmcnmnloo'iiannmc
N/A
6. DISTRIBUTION STATEMENT (ol this Repoer)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the ebatract entered in Block 20, i dilferent from Report)
Same
" 18, SUPPLEMENTARY NOTES
2 RADC Project Engineer: Nicholas V. Karas (EEC)
q ¥
L This effort was sponsored by the Defense Nuclear Agency
: 19. KEY WORDS (Continue on reverse side il necessary and identity by bleck mumber) .
Polarization dependence .
1 ' Leaky coax
R rf detection ¢
— 4 20. ABSTRACT (Continue on reverse aside il necessary and identily by dlock number)
. - | An analytical model of a class of RF intrusion sensor systems was con-
structed. The constituents of the model are: a slotted coaxial cable
laid circularly on the ground, an electromagnetic scatterer intended to
simulate a human frame target in the vicinity of the cable and an antenna
near the center of the circular configuration. Using the concept of a
general electromagnetic field as a superposition of plane-wave fields
("plane-wave spectral representation of fields"), calculations were made |

DD ,an'ss 1473  €oition oF 1 NOv 8 13 ossoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

. 'U ;,""7'.',“; . vyl
. L MO,

I o




L

F
SRCURTY CLASSIFICATION OF THIS PAGE(When Date Entered)

of: (a) the fields from the cable slots as if the cable were in free
space; (b) the effect of ground reflections on the fields from the slots;
(c) the fields of the waves scattered from the human frame target directly]
toward the antenna in response to the incident wave fields [(a) plus
(¥)]; and (d) the effect of ground reflections on the scattered wave
fields. These calculations were programmed for the VAX computer and some
numerical results are presented for various orientations and positions of
the human frame target.

o

/

SECURITY CLASSIFICATION OF Tu'® PAGE(When Date Entered)




Project Personnel

J. S. Rochefort - Principal Investigator

Harold R. Raemer - Lead Postdoctoral

Samuel Rosenthal - Scientific Programmer

Accession For

NTIS GRA&I

DTIC TAB
Unannounced 0
Justification__

By __
Distribution/

conry i _
‘“5""2““ ' Availability Codes
‘Avail and/or
Dist | Epecial

1
{




<,

T TNTARTTON

Table of Contents

Section

1. Introduction

2. Mathematical Modelling of RF Intrusion Sensor System

3. Spectral Fields from a Rectangular Slot

4, Spectral Fields from Slots in a Coaxial Cable Laid Circularly
5. Plane-Wave Spectral Representation of Ground-Reflected Fields
6. Fields Incident on the Scatterer-Coordinate Transformation at

Input to Scattering Process

7. The Barber Scattering Program

8. Scattered Fields-Coordinate Transformation at Output of
Scattering Process

9. Effect of Ground Reflections on the Scattered Field

10. Total Spectral Field at the Observation Point and Its Inverse
Fourier Transform

11.  Numerical Results and Conclusions

References

Appendix

I. Kirchhoff-Huyghens (or Stratton-Chu) Integral Formulas for
Fields from Apertures

I1. Plane-Wave Spectral Representation of Fields

I11. Plane-Wave Spectral Representation of the Fields from an
Aperture

IV. Electromagnetic Wave Propagation Alonq a Coaxial Cable

Page
1-1
2-1
3-1
a-1
5-1

6-1
7-1

8-1
9-1

10-1

to
to
to
to
to

to
to

to
to

1-10
2-8
3-6
h=18

5-13

6-32
7-6

8-9
9-11

to 10-10

11-1 to 11-89

R-1 to R-6

I11-1

Iv-1

to

I-4

to II-4

to III-%

to IV-19




1. INTRODUCTION

This is the final report on RADC Postdoctoral Contract No. CCT-SC-0102-442,
Task Order 1. The work statement covering the portion of the project beginning
May 8, 1979 and terminating on November 1, 1979 is presented below:

The objective of the project is to construct an analytical model of a
class of RF intrusion sensor systems which can be used to predict their
behaviPr under a wide range of conditions. There are a variety of RF intrusion
sensor systems now in use or under developmentS™! through B=9 . . 4 o ork

will be focussed on a specific configuration§'3’8'4’8'5’3’7 In this system

a signal is generated at a paint along a leaky coaxial cable®~! through C-14
laid out c¢ircularly on the periphery of an area to be protected.

A receiving antenna is mounted at or near the center of the area to respond
to signal energy "leaking" from the small apertures placed along the cable.
The entrance of an intruder perturbs the field in the vicinity of the cable
and this perturbatibn is sensad by the antenna.

The work will be divided into four sequential tasks, as follows:

Iégg_l: A review of the pertinent litarature to determine what analytical
work hés been done that is applicable to the problem. Particular attention
will be focused on papers dealing with the fields generated by leaky coaxial

C-1 through C-14 and the perturbation of fields by various kinds of ob-

jects, including humans and animaisD-! through D-35

cahles

Task 2: Generation of an analytical model for the specified configuration,

§
using past results uncovered in Task 1 whenever they are applicable and gener-

ating new analysis if (as is already evident) the past work does not cover the
entire problem. The model envisioned involves the use of theory already formu-

lated on the fields around a leaky coaxial cable in free space, generalization
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of that theory to include the effect of the ground on these fields, and
finally the perturbation of the fields due to foreign objects entering the
environment. Particular emphasis wiil be placed on the polarization character-
istics of the unperturbed and perturbed fields, with a view toward the use of
polarization changes as a means of identifying and tracking intruders.

Task 3: Construction of a Fortran program based on the analytical results
obtained in Task 2. This program is expected to contain a large number of un-
specified variables. Among those should be the radio frequency, constitutive
parameters of the ground and those of foreign objects perturbing the fields,
size and shape parameters of these objects, polarization characteristics of
the fields and other variable parameters associated with the cable, receiving
antenna and the intruding object.

Task 4: A parametric study based on the computer program constructed in
Task 3 to determine the effects of various parameters on the expected behavior
of the system.

devededek

The contract was extended beyond November 1, 1979. However, there was a
hiatus between that date and March 1980, when the second portion of the
contract officially began. The extension covered the period from the above
date to November 1, 1980.

The work statement for the second portion of the contract is presented
below:

The objective of the project is to analyze a particular class of RF
intrusion systems. Results will be used to predict their behavior under a
wide range of conditions. There are a variety of RF intrusion systems now in

use or under development, but this work focuses on a specific configuration.

In this system a signal is generated at a point along a leaky coaxial cable




laid out circularly on the periphery of an area to be protected.
A receiving antenna is mounted at or near the center of the area to
respond to signal energy "lTeaking" from the small apertures placed along the

cable. The entrance of an intruder perturbs the field in the vicinity of the

cable and this perturbation is sensed by the antenna.

EERC I 2 )

Work on this problem was initiated in May 1979. A comprehensive review
of the pertinent literature was completed. An analytical model was constructed
which includes (a) mathematical expressions for the fields generated by the
cable slots in free space, (b) the effect of ground reflections on the fields
from the slots, (c) a generalized mathematical model for the scattered fields
not accounting for ground reflections of these fields, and (d) a computer pro-
gram for the slot-induced fields both with and without ground reflections.

The subject task constitutes an enlargement of the scope of the work to

include detailed results on the fields scattered from human frame targets.

P The projected phases of this task are:
Phase 1: An analysis of the scattering from human frame targets, where
W the target is modelled as a lossy dielectric of ellipsoidal
or spheroidal shape.
Phase 2: Incorporation of the scattering results of Phase 1 into the
3 generalized mathematical model. The scattered fields obtained
will include the effect of the fields from the slots impinging
< directly on the target and the ground-reflected slot-induced
A . fields also incident on the target.
; Phase 3: Analysis of the effect of ground-reflections on the fields
obtained in Phase 2.
Phase 4: Development of a computer program incorporating the results of

the analysis done in Phases 1, 2 and 3 and containing the

. .
EASRMATEN sl ot 20 Y S



il. 1
¢

previously developed program [see (d) above] as a subprogram.
Phase 5: Use of the computer program developed in Phase 4 to obtain a
set of numerical results showing the variation of the signals
received at the antenna with key system parameters.
RhAdd
The report describes the very extensive mathematical analysis undertaken
to meet the above objectives. Numerical results are presented for a limited
range of parameter values. The limitations are those of time and cost. The
analytical model and the resulting computer programs are sufficiently general
to include the capability of treating a much wider range of geometries and
parameter variations. The outputs of the project should be considered as two-
fold. First, the particular geometries for which computer results are shown
are of direct importance in themselves. Secondly, the computer program should
be considered as an output of the work, since it could now be used to study a
wide range of cases that may be of practical interest.
The body of the report is divided into 11 sections. There are also five
appendices. Section 2 contains a mathematical description of the basic model

of the system. The generic configuration being analyzed consists of: (1) a

set of apertures, small compared with wavelength, on which electric and magnetic
fields can be specified. These apertures are placed somewhere in the vicinity
of a flat ground surface; (2] an electromagnetic scatterer modelled to resemble
an "intruder”; (3) an antenna, placed at an arbitrary point, which receives
signals resulting from the field distributions on the apertures. The received
signals are influenced by the presence of the ground and should also be in-
fluenced by the presence of the intruder. It is clear that the major objective
of the work is to determine the magnitude and polarization of the fields at the

receiving antenna both with and without the presence of the intruder and to
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determine the effect of the intruder's presence on the magnitude and polariza-
tion of the fields.

In order to obtain numerical results, it is of course necessary to specify
more tightly the set of apertures, the scatterer used to represent the intruder
and the location of the antenna. Hence, in the situation actually modelled on
the computer, the apertures are small slots along a coaxial cable laid along
the ground surface in a circular pattern. The antenna is somewhere near, but
not necessarily exactly at, the center of this circular configuration. The

scatterer is a spheroid somewhere near the cable. The spheroid must have uni-

form constitutive parameters but aside from that constraint is not restricted,

since it is in general a lossy dielectric. The frequency range of validity of

the analysis is roughly from 50MHz to 500MHz, implying a wavelength range
i between roughly 0.6 and 6 meters. The cable diameter is less than two centi-

| meters and the length of each slot on the cable is less than one centimeter,

L b e -

hence slot dimensions are always small compared with wavelength. This is a
feature that simplifies the analysis somewhat.
Yo It was not possible within the time and cost constraints of the project
iQi to model the cable fields, the scatterer and the effect of the ground in a
rigorous manner. "Engineering approximations" were necessary to render the
analysis feasible. Before delineating these approximations, we will first
; describe the basic methodology.
F-. The electric and magnetic fields were all expressed as superpositions
] of plane waves. This "plane wave spectrum" type of analysis can be viewed as
f.} ' a process of three-dimensional Fourier transformation from the space of a set
1 of three position coordinates (x, y, z) to the space of a set of three com-
ponents of a wave propagation vector ko g = (ko Bx, ko By, ko Bz). Since ko,

—~ the propagation constant of free space, is a constant, we deal with the vector

1-5
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space (B,, By, B,)» subject to the constraint Bi + B, +8, =1. Because

Y
of that constraint, only two of the components By By or 8, (say By» By) can
be specified independently and the other (say Bz) can be calculated therefrom.

Hence, the process degenerates to a two-dimensional Fourier transformation be-

tween two position coordinates (say x, y) and two components of E (say By By).
Section II of the report describes the general mathematical modelling of
the problem. The plane-wave spectrum of the field at the antenna consists of
four contributions, as follows:
(1) the direct wave from the slots in the cable [as if the ground and
intruder (scatterer) were not present]
(2) the ground-reflected wave from the slots in the absence of an in-
truder (scatterer)
(3) the field scattered by the intruder directly into the antenna
(4) the ground-reflected field at the antenna resulting from scattering

by the intruder.

The plane-wave spectrum type of modelling enables us to determine the
contributions (2) and (4) using standard theory of reflection of a plane-wave
from an infinite surface. Another very important reason for using that type
of modelling is the fact that the scattering program we are using (the best
available, in the writer's opinion, for the purpose at hand) assumes a plane-
wave input. Thus, by considering the fields at every stage of the process
as the fields of a plane-wave, we are enhancing the accuracy of the calcula-
tions (as compared with approximating fields of spherical waves or near-zone
waves or other more complicated field patterns as plane-waves).

However, the negative feature of this kind of modelling is that it
necessitates a process of inverse two-dimensional Fourier transformation at

the last stage of the calculation in order to convert the field spectra,

i LA T W S ORGMPPR, sy Sy TR OO IS I gy, RS



functions of (Sx, By), into functions of the horizontal position coordinates
(x, y). That process is computer-time intensive and, hence, the computations
require more computer time than would simpler but more approximate modelling
schemes we could have used.

Section 3 and Appendix I contain material on the method variously
called the “Kirchhoff-Huyghens" or "Stratton-Chu" integral method of deter-
mination of the fields at an arbitrary point in space due to fields on a
closed surface surrounding that point. This technique, widely used in antenna
theory, is our method of calculating the fields from the slots along the cable.

The method is presented in general in Appendix 1. In Appendix I1I the general

concept of the plane-wave spectral representation of fields is presented.
Appendix III covers the spectral representation of the fields from an aperture

as calculated using the Kirchhoff-Huyghens integral method. Section 3 of the

main body of the report specializes the analysis in Appendix III to the case
of the rectangular slot. The use of a rectangular slot shape for mathematical
convenience is an approximation to the actual shape of slots on the cable of

central interest. However, since slot dimensions are small compared with

wavelength, the results are not significantly dependent on slot shape but only H
on slot area regardless of shape.

Section 4 specializes the analysis in Section 3 to the specific case

P AR Y A

of a slotted coaxial cable laid in a circular pattern, which is the actual

case treated in our numerical work. The wave modes propagating in the cable ‘
are detailed in Appendix IV. The analysis in Section 4 1is the basis of Sub-
routine SOURCE, which is our computer program to evaluate the fields from the
cable as if the cable were in free space.
Section 5 treats the reflection of plane-wave fields from the ground

syrface. This analysis is the basis for a section in the main program which
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is applied twice, first to the field from the cable, and secondly to the field
from the scatterer.

Section 6 treats the coordinate transformations required to enter the
scattering program. The latter is called "Subroutine BARBER", after Pro-
fessor Peter Barber of the Bioengineering Department at the University of
Utah, who developed the program and kindly gave us the program cards for use
in Northeastern's VAX computer. Barber's program, discussed in Section 7,
considers an incoming plane-wave specified by a magnitude and polarization in
a "lab frame" (Barber's terminology) coordinate system. The basic coordinate
system used in our problem, which we call the "ground frame", is the co-
ordinate system in which our "Subroutine SOURCE" delivers the field components
from the cable back into the main program. In the main program, the ground
reflection operation is performed, and the superposition of plane-wave spectra
of direct and ground-reflected source fields is then evaluated. The resultant
field components are expressed in the ground frame. The analysis discussed
in Section 6 describes the transformation of field components between Barber's
lab frame and our ground frame, so that the input to Barber's scattering pro-
gram can be expressed in his 1ab frame. The program to implement the analysis
in Section & is called "Subroutine BIS" ("Barber Input Subroutine").

As indicated above, the Barber scattering program is discussed in Section
7. 1In Section 8, we present the coordinate transformation required to
transform the output of the scattering program, i.e., the scattered field
components, from Barber's lab frame, in which these components are expressed
in his program, back to the ground frame. The program based on this analysis
is called "Subroutine BOS" ("Barber Output Subroutine").

In Section 9 we describe the analysis of the effect of ground reflection

on the scattered field. Computationally, the implementation of this analysis

" ror—e—— —
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is accomplished in the main program, which receives from Subroutine BARBER

via Subroutine BOS the scattered waves in two directions, one being that
directed from the center of the scatterer to the antenna position, the other
being that directed from the center of the scatterer to a "ground reflection
point", which, as dictated by the law of reflection, sends the ground-reflected
wave toward the antenna. The first of these scattered fields is logged in the
main program as that received by the antenna [Contribution (3)] and the second
is driven through the ground-reflection process ir the main program and the
result becomes Contribution (4) at the antenna.

The justification for considering scattering in only these two directions
as opposed to all directions (which would have required prohibitively large
computer time and would have required still another double Fourier trans-
formation), is the fact that the scatterer is in the far-zone of the antenna
and subtends a very small angle at the antenna, so that the antenna sees it
as very nearly a point source. Hence, it appears as a plane-wave at the
antenna. Barber's scattering program produces a plane-wave in any given di-
rection, which when multiplied by the Green's function eJkor/r. can be viewed
by an observer at the antenna as a spherical wave from that direction, the
curvature of whose phase front is negligible, i.e., equivalent to a plane-wave
weighted by-% . The ground-reflected scattered wave, to be treated rigorously,
would require that scattered plane-waves in all directions be reflected from
the ground and that the wave seen at the antenna is the superposition of all
of these waves. However, the theory of the plane-wave spectral répresentation
of 1’ie1ds»‘°1’A'2 shows that, if the receiving point is sufficiently far away, the
only significant contribution is that which obeys the law of reflection. Hence,
according to this approximation, in view of the large distance between the

antenna and the scatterer, and the fact that they are each in the other's "far

1-9
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zone", it is sufficient to consider only one ground-reflected plane-wave

from a single ground-reflection point. Invoking this approximation saves an
enormous amount of computer time since it saves us from another round of double
Fourier transformations.

Section 10 contains the analytical basis for the way in which the overall
computation must be done to provide for the inverse Fourier transformation of
the composite fields. This is done in the main program, with the aid of two
small subroutines labeled COMPUTECO and COMPUTEEF. The first of these sub-
routines performs a numerical integration of each component of the spectral
field vector on the angle og [= tan'](ay/ex)] from 0 to 2nr. The second performs
another numerical integration on Bh (= JEE—:_Eg-) from 0 to 1. This double
integration procedure is done in computing the inverse Fourier transform of the
field components at the antenna in the absence of the scatterer.

It was attempted to carry out this same procedure in the case where the
scatterer is present. In this case, the inverse Fourier transform must be
computed at the position of the center of the scatterer, rather than the an-
tenna position. [t was found that, with the scatterer present, computer time
becomes prohibitively large when the above procedure is used. It was decided
to make use of the stationary phase principle to evaluate (approximately) the
integral on ¢B analytically. A justification for the use of this method is

presented in Section 10.

Section 11 contains numerical results and conclusions therefrom.
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2. MATHEMATICAL MODELLING OF RF INTRUSION SENSOR SYSTEM

The generic system that is the subject of this study is shown in Figure 2.1.

The point 0 on the diagram is the origin of coordinates.

Scatterer

// /%m//// ;

Figure 2-1. Generic Free-space System Geometry

' 4
3 Pos

?1

Consider a collection of N sources numbered with an index & ranging from
1 through N. The source numbered ¢ is centered at a position Péz designated
by a vector :62 originating at 0 and terminating on Péz‘ It occupies a small
volume around the point Péz’ but this volume is assumed to subtend a very
small solid angle when viewed from the position of a receiving point and hence
appears to be a point source at the receiving point. There may be a number
of receiving points; hence they are numbered with an index m, ranging from 1

through M, The mth

receiving point Pm is designated by a vector :m’ originating
at 0 and terminating on Pm.

The scatterer is centered at a point P

designated by a vector Tos

os’




originating at 0 and terminating on Pos‘

The point P is an arbitrary point in space, designated by a vector r
emanating from 0 and terminating on P.

We denote the electric field vector at the point P due to excitation of the
L source by a three-element column vector [Ez(fm)] whose elements are the
rectangular components of E in the basic (x,y,z) coordinate system. This
system, as shown in Figure 2.7, has its z-axis in the vertical direction (up-
ward) and its (x,y) plane along the ground surface. Thus, the electric field

at the arbitrary point P due to excitation at source £ is:

FE,‘X (;)-
[Ey (N1 = 1E, (1) (2.1)

| Bz (1)

Using the plane-wave spectral representation for the electric fieldA']‘A'z

(Appendix II, Eq. II-3), we have

- lz__
By e {e (€, (8)) + e z (E,.(8,) 1}

T kg, o -Jk|8, |2 ik|8
[Eg(:)] = j] dZ d r4

(2.2)

where r = 0 + 22; p = xX + yz
-+> +> -

- -

iezl = ’1 - BE » By ®xB, + gey H

- and + refer to the cases g, = -|8,| (downward propagation) and 8, = +8,l

(upward propagation), respectively.




where

(Eya(8)] =[Ez (&)

E -
:£+.z(§hl]
The magnetic field vector at Pm due to excitation at source & is given by

T k8, -p  -3k|8,lz .
Myl = [[ @ gy e Mo 2 "p (g)]E, ()]

-0

jk|s, |z .
te _I 3 1P, (8, JE,, (8,) 1) (2.3)

where (from the Maxwell equations H = —_— x E)
JU’UO -+

0 1l 8,
p(3)=.€_2;|3| 0 -8 (2.4)
;-»h u 4 X *
J Yo
8, 8 0
b ——

The fields 52 and He have four contributions as follows:
E,(071 = (1 + P01+ g1+ 1 (2.5

(0] = BT+ P 1+ {1+ {1 (25

2-3
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where the superscripts a, b, ¢, d correspond to the following:

{a) Direct wave from source % to point P in infinite free space (i.e.,
in absence of ground or scatterer)

(b) Reflected wave from ground due to excitation of source 2 in absence
of scatterer, as observed at point P

(c) Direct wave from scatterer (as if the scatterer were in infinite
free space) where the fields incident on the scatterer consist of
the superposition of the direct wave from Péz to the scatterer and
the ground-reflected wave at the scatterer resulting from excitation
of source ¢

(d) Ground-reflected wave at P in response to the scattered wave fields.

It will be shown in Section 5 (see 5.18a) that the plane wave spectrum
of the reflected wave field (superscript (b)) is related to that of the in-

cident wave field (superscript (a)) by the expression
(En(8,)] = [Re(8,)ILE; _(8,)] (2.6)

where [RE(Eh)] is given by Eq. (5.18a) and Eq. (5.19). The receiving point
is always above ground-level; hence the subscripts and the incident wave at
the ground reflecting point always propagate downward; + and - are u;ed on the
reflected and incident waves, respectively.

The p1$ne-wave spectrum of the reflected wave as given by Eq. (2.6) cor-
responds to the wave with superscript (b) while the spectrum of the incident
wave corresponds to that with superscript (a). Using these superscripts in

their appropriate places in Eq. (2.2), with the aid of Eqs. (2.5a,b) and (2.6),

we obtain the following results:

2-4
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Case A: Presence of ground not accounted for; scatterer not present. Fields

at point P are [see Eqs. (2.2) and (2.5a)]

Siayg -SKls,:

6 (D Icase a || € 8y @ 22 (g,) (2.7a)

-

if source is above P

¥ k8 jkls z _
[[ &g e | g (ey) ]

) H

if source is below P.

where

E(a)( ) = spectrum of electric field due to source £ in infinite
free space,

and where

B, = *+|8,| for subscript +

F4

-18,| for subscript -

Also, from Eqs. (2.3), (2.4) and (2.5b)

¥ k8, -0 -ik|8,|z .
My ]egan [ e 2 el [P_(8,) E2 (8,1  (2.70)

if source is above P

Jkepcp k(8
g e e &l g H(E TE( (8,

&—-8

if source is below P.
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Case B: Presence of ground is accounted for; scatterer not present. The

fields are (see Eqs. (2.2, (2.3), (2.4), (2.5a,b) and (2.6)).

[Eg(r ] pge = [EL2)(MT + [E{P) ()] (2.8a)
(M cse 5 = (M1 + 1PV (r)] (2.8b)

where [Eéa)] and Lﬂﬁa)] are given in general by Eqs. (2.7a) and (2.7b),
respectively, with the aid of Eq. (2.4), and where (from Eqs. (2.2), (2.3),
(2.4), (2.5a,b) and (2.6)),
" ikB, -p jk|8 =(
[Egb)(I)]case B~ [f dz Eh eJ g eJ | ZIZ [RE(Eh)](Ezf)(Eh)] (2.92)

oo kB p Jk‘B
(b) 2., %8
[Hy " (M) ]case 8 = II d” B, e ¢

2 .
2 1P, (8, MRe(8,) TCEL (8]
(2.9b)

where [P+(§h)] is given by Eq. (2.4) and the matrix [RE(gh)] is given in
Section 5 [Eqs. (5.18a) and (5.19)].

Case C: Presence of ground is accounted for in determination of the fields
incident on the scatterer but not in evaluating the scattered field
(i.e., ground-reflection of scattered wave is neglected). In this

case, the fields at point P are: (see Eqs. (2.4 through 2.8b))

(€40 Jease ¢ = E4 (01 + 5P (0] + () (p) (2.10a)

T e e g e P e




el case ¢ = [_*i;(za)(:)] + [fib)(.:)l + 1)) (2.10b)

where [Ega)(r)], [ﬁga)(x)], [Eéb)(f)] and [Egb)(g)] are given by Eqs. (2.7a),
(2.7b), (2.8a), (2.9a) and (2.8b), (2.9b), respectively, aided by Eqs. (2.2)
through (2.6). The field vectors [E§C)(I)] and [E§C)CI)] will be discussed
in what follows.

Referring to Figure 2.1, we can express the scattered field in the form

[EJ(LC)(I)] . ” 25 ejkgh-g {ng)(gh) e-jklezlz
LE9E & (2.11)
where
B = 65 e e,
+ 308 ELR s, 1
£, = B EIER P,
+ 3 (g 1R P (s 0
and where

61, 15001, 15008,07 ana 15{M) (g,

are 3x3 matrices, and




2(a)4(b 2 (b)
g1 = B g1 + (E (g2

We will not discuss the details of this constituent of the field at this

point.

R e N O



e

S TV ey -

Lake e o Sl chs

3. SPECTRAL FIELDS FROM A RECTANGULAR SLOT

We will approximate the slots in the cable as rectangular. Since the
slots are always small relative to wavelength, the exact shape of the slot
will not be critical. This supposition is borne out by the approximations that
can be justified when actual parameter values are assigned, as will become

evident later in this report.

th

Let us assign a set of coordinates (xi, yé, zi) to the 2 slot, together

with a "length" Lz in the xi direction and a "width" W_ in the yé direction and

L

a slot center located at a point (x! , zio). We note that the (xi - yi)

20° Y20
plane is in the plane of the slot and hence zio = 0. We have not specified the
origin of this coordinate system.

Referring to Appendix III, Eqs. (IIl.6a,b) and (III.7a,b), points on the

slot are designated by a vector

l._. I= ] + ]
L ¢ T ¢ TR ¥

where rio is the vector representing the center of the slots.
>

The vector referred to in Eqs. (IIl.6a,b) and (I11.7a,b) emanates at the
origin of the basic (x, y, z) coordinate system. Therefore, it would be cor-

rect to designate the vector as follows:

Le0

rl = ;(X (3.2)

L0 57w * Yo * Ezzo

where (xzo, Yio° zzo) are the slot center coordinates in the basic (x, y, 2z)

system,

The vector Ari, on the other hand, which refers to the displacement of a




kxR ek

point on .he slot surface from the slot center, should be expressed in the
slot coordinates as

o]

Bry = X Mxp + §) dy) (3.3)

where (ii, gi, gi) are the unit base vectors in the slot coordinate system and
Axi and Ayi are the displacements from the slot center in the xi and yé di-
rections, respectively. There is no displacement in the zi direction, so it
is clear that Azi = 0.

We will now make an additional assumption which will apply in every case
considered, namely that the most general spatial dependence of key terms in

the vector field components

H' x E, 8- - E, 8- x H and R' - H

- - > -> > > -+ -
in Egs. (II1.6a,b) and (III.7a,b) is exponential in xi and yé. Moreaver, the
exponential dependence is the same for all four of these vectors. Mathematically,

we can express this with the statements:

- k(g x *zoy))

' - f o' °n 2 2
n' X § = g Eanz(zz) e 13.43)
. jk_(g x+g y:)
N EsTC () e N "t (3.4b)
R jk (g x +z y )
n'xH=7j ccnl(zz) e 0L 'y (3.4¢)
- > n>




Figure 3-1. Slot Geometry




Jk (£, xpFeyg)

@' cH =) Calzg) e (3.4d)
n

vhere it is indicated tnat the vectors F<Q) and C and thoe scalars C d

Sand acnt bns, &N

C are in general functions of z) and &n and ¢ _are in generai complex.

L
lie should carefully note here the fact that the coordinates (xéo, yio, z;o)

dny n

are the coordinates of the slot center in the (xé, yé, z;) system, The origin
of this system will generally be placed at the launching point for the energy
that drives the source and this origin has no relationship to the origin of
the basic (x, y, z) coordinate system. Failure to take note of this point
could lead to confusion in the formulation of the eguations to follow.
Substituting Eqs. (3.4a,b,c,d) into Eqs. (III.6a,b) and (III.7a,b), we
would obtain [where Ef-= [ EIBZI and Sié’ Bii’ Bii are the (XQ, Ye» 24)

+
canponents of -

->

Note that the components of gi in the hasic x, y, z system

are Bx’ By,,t IRZI and the components of the slot center in that system are

X0 Yoo 220.[ Also note that we have not indicated explicitly the spatial

dependence of the modified spectral fields in what follows.]

2
- (J k) -3k (B.x, +8 y +|8 |z, )
(€, (8, = ’"ﬁiﬁL“'g e o X ko om e o ([1E(3,)1,), (3.5a)
-t

2 .
(3 k) ~dko (B X0 5t B Yot B,1250)

[ij(ﬁh)ll i T {[5(8,)1,} (3.5b)

gt

where

i ' ' L/2 z ' +

+ 3k (€ x) 4T yo ) o T Jk Ax (£ -8-, )

([1{(8,) 1), = e © Ao "mho d(ax;)e O B n xR

-Ly/2

W,/2 . +
L Jk by, (c -8, )

-HZ/Z

' R R L
RN 3 ’

B e ol B R S T Yo S R
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- {-7 ( ol - [ "c (2

0 »cn% yanf

)_{ (.,c \"

R() y - "IV

, k(e x; +e v ) i
{[Iﬁ(ﬁ;’h)]&}n — 0" N L0 "nTLo , d(,‘\x') o [

NQ/Z
' 0! ny9 '
d(A)R) {Y Cano( Lo)

-WQ/Z

B [E »an( éo) - §i Cdnq(zio)]} (3.6b)

The integrals in Eqs. (3.6a,b) are easily evaluated. They are "sinc"
functions (i.e. ,»Slg-x ) with complex arguments. Incorporating that fact into
Eqs. (3.6a,b) with the aid of Egqs. (3.4a,b,c,d), we can sumrarize the results

as follows:

ﬂ
Y S _ | :
[E (8 )1 = ff_fgl_ e Jko(ﬁxxiokﬁyyloj*ﬁzlzﬂo Jk (tny90+any£o)
»)i-)h-l 4'" n
L Ni
. sinc [k (P MY} En "5 ] sinc [lo(ey'l sn) 5 ]
; ' + (ot '
Ly Copg (2 0) + (87 G, (20 0) (g X Cang (25 NI FF
(3.7a)
1
-
N j



i . 2 .

, (J k )& <ik (5.x, 10y 8,1z, )k (X0t Y no)

E [ +\b )J Qﬁd & o 0 XTHO L0 n*io 2.0

[ H | i
» |
';' : + £ My :

g . sinc [ko(sx'ﬁ ) ' ] sinc [Po( y T cn) s ]

.

b . ' s ' _ +

3 ’ {Yo &anﬁ(zlo) ¥ [ﬁ Cdnﬁ(zio) (Q‘ X Can( ]}f

(3.7b)

The forms (3.7a,b) will be used in Section 4 as the basis for development

of the field expressions to be used in our final results.
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4. SPECTRAL FIELDS FROM SLOTS IN A
COAXIAL CABLE LAID CIRCULARLY

We consider the source configuration to consist of a leaky coaxial cable
laid in a circular pattern, with the radius of curvature or the configuration
sufficiently large to justify considering the propagation down the cable to
be equivalent to that along a straight cable. The geometry is shown in Figure 4.1.
The local cylindrical coordinates used within the cable in the vicinity
of the zth slot are designated as (r;, ¢E, z;) with corresponding rectangular
coordinates (x;, ¥g» z;). The inner and outer conductor radii are denoted by
a and b respectively. The finite thickness of the outer conductor is neglected

in designating the radial coordinate of the slot; hence, r) = b in all cases.

L
The radius of the cable configuration is denoted by . In all cases to

be considered, it will be true that

ky @ << 1 (4.1a)
k° b << 1 (4.1b)
R> a - (4.1c)
R> b (4.1d)
kg B >> 1 (4.1e)

To obtain needed relationships between coordinate systems, we consider

Figure 4.2a,b,c,d.
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»~~~ Looking
vertically
downward

Slot #
Coordinates of point P
in system § = (X, Yy, Z)

Looking
vertically
downward

Looking
vertically
dowvnward

Coordinates of point P
in system S; = (x{, ¥{» 2})

Slot #2 X = R €OS ¢£o + xi

y = R sin ¢ * yi
z=Db+ 2z

= x - R ces b0

y = R sin ¢g4

zZ-b

Coordinates of point P
in system S = (x5, ¥5, 2)

= xé cos ¢, - yé sin %20

xé sin %0 * yé cos ¢,

Z;

xi cos °zo + yi sin %20
-xi sin $0 * yi cos ¢y,
1

4

Figure 4-2. Coordinate Systems
4-3




Slot #2

Looking down
cable axis
near Slot #2 (d)

Looking down
cable axis
near Slot #%

Coordinates of point P
in system 55 = (xé, ¥3» zé)

Xy = z3 cos ¢g0 - ¥3 sin ¢, (4.42)
3 = x§ (4.4b)
zé = zé sin bgo *+ yé cos ¢£o (4.4¢)
x3 = Y3 (4.4d)
yé = %y sin g5, + 25 cos ¢y, (4.4e)

zé = X5 COS $o0 * 2, sin %o (8.41)

Coordinates of point P
in System Sa = (XA’ ya, 24)

X3 = %z (4.5a)
¥3 =Y (4.5b)
zé =b + z& (4.5¢)
xa = xé (4.5d)
Yy = Y3 (4.5e)
23=2-b (4.5¢)

Figure 4-2. Coordinate Systems (comnt'd)
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From the equatfons in Figure 4.2a,b,c,d the point P has (x, y, 2)

coordinates given by

X = Rcos ¢ + xi = R COS ¢, + xé cos ¢, - yé sin %20

R cos ¢, + (zé cos ¢;o - y3 sin @Eo) cos ¢, - xé sin %0

= Rcos ¢, + ((b + z&) cos ¢E° - yg sin ¢Eo] cos ¢, - xa sin %0 .
(4.6a)
y = R sin %0 * yi = R sin ¢ t xé sin %0 * yé cos ¢,
= R sin %0 * (zé cos ¢Eo - yé sin ¢;°) sin %0 * xé cos ¢,
= Rsin ¢, + [(b + z&) cos ¢Eo -y, sin ¢E°] sin ¢, + Xq COS %0
(4.6b)
z2=b+2zy=b+2z)=b+ (z}sin 930 * Y3 coOs ¢E°)
=b+ [(b+ z&) sin 97, + yg cos ¢E°] (4.6¢)
If P is at the center of Slot #2, then
xA 2 yé = za =2 ( (4-7)

Substituting Eq. (4.7) into Eqs. (4.6a,b,c), we have for the (x, y, z)

th

coordinates at the L~ slot center [with the aid of the condition (4.1d)]

4-4
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¥

S

X50 * (R + b cos ¢;°) Cos ¢, = R COS ¢,
Yo ® (R + b cos ¢;o) sin %0 = R sin ¢,
2, = b(1 + sin ¢;0)

Note that [see Eqs. (3.1), (3.2), (3.3)], 1f ar, = X AX
-

+
B™ - Ory =B Ax) + B8 ly ¥ |8, Az,

[} ] t
Ax2(°3x sin 00 * By cos ¢20)

+

Y

where it follows from Eq. (4.8) that

+

Bx'z = Bx'z = -Bx sin ¢zo + By cos ¢2°

+ : s n "
8;.2 = -(B, cos %90 * By sin ¢2°) sin ¢p  + IBZI cos ¢g
+ 2 2

85 =2 1 - (857 - ()

(4.8a)

(4.80)

by, [-(8, cos ¢,  + 8 sin ¢, ) sin 050 * 18,1 cos ¢ ]

(4.9)

(4.10a)

(4.100)

(4.10c)

The exponential factors in Eqs. (3.5a,b) can be written [with the aid of

Eqs. (4.8a,b,c)] in the form

AP b T T

[ T




Jk (8,%50 *BY oot *18,1250)

. o TKofn(mHbcosso)cos oyg-ag)idk, I8, IbCIsstnegy)

where

8
= / 2,22 . . = tap”]
B By * By » 9g = tan ' ( EZ )

The slot center coordinate x appearing in Egs. (3.7a,b) is the displace-

th

ment along the cable of the £~ slot center from the launching point for wave

energy propagating down the cable [as indicated earlier, this point will be

designated as the origin of the coordinate system defined with respect to the
cable itself, i.e., the (r", ¢", z") system]. It is easy to deduce (see

th

Figure 4.2) that (if subscript %o indicates £- slot center for all coordinates)

20 = 230 = Py (4.12)

The other slot center coordinate appearing in Eqs. (3.7a,b), denoted by
yio’ is the linear coordinate corresponding to the angular position of the
slot center around the preiphery of the cable. It is evident from Figure 4.2

that this coordinate is given by

Y50 = P50 (4.13)

The approximations used to justify the modelling of the slots as rec-

tangular (ignoring the curvature of the slots both along the cable and

around its periphery) and thereby justify the use of Eqs. (4.12) and (4.13)

are:
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TR

(1) The radius R is so large and the slot length Lﬁ so small that in the
vicinity of the 2

slot we can fgnore the curvature of the slot along the
cable, i.e., in the direction of wave propagation.
(2) The slot width W, is small enough to neglect the curvature of the
slot around the cable periphery.
*kh AR
The forms (3.4a,b,c,d) used to represent fields are valid in the case of
propagation along a coaxial cable, since fields can be represented as a series

th

of propagating modes, where the n*" mode has a factar

-jkznzll jﬂ¢"
F (2" o") = e . e (4.14)

where kzn is the complex propagation constant of mode #n and n is the mode
integer.

To relate Eq. (4.14) to the forms (3.4a,b,c,d) we set 2" and ¢" to on
and ¢;o in Eq. (4.14) and then, with the aid of Eq. (4.12)

gn = “kzn (4.15)
where
k -ja ~ -~ A A

A 2nR n _ - N

Kzn Ky = Kppp * Jkppl = kppp - Jop

k =_(£.

znR n

th

v, = phase velocity of n~ mode in meters/second

n

P T,
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~ halG.3
) A
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Mres Ens, (4.13), (3.4a,b,c,d), and (4.1%)

n
7y o= e I
e T YD (4.18)
0
The variable _i in Egs. (3.4a,b,c,d) i, the radial coordinate v"; hence, we
can designate Can’ Cbn ... etc. in Eqs. (3.4a,b,c,d) as functions of the value

of ' at the slut, which is equal to b, the cuter radius of the cable. Thus,
the foriis of Eqs. (3.7a,b) for the specialization in this seciion are [using
Egs. {4.11) through (4.16)]:

(J k )2
[ (ﬁ)] 'Xe

n

-Jkoah(u+bcosuio)cos(¢f0~¢ﬁ)

_ik (K B)eyq nég

1jk0! L 1b( T+singg ) olkzn

. € e . e
ky L kU
|3 + o +
sinc [ _92——-[Bx )1 sine [ =552 (871 - I;?-_ )1
ez ¢l + g gl ) - (6* x dHenn  @wan) :
. f
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' ~
k( L. . . ::O + "
P ‘,4'_ e L . . \ ~ Yo n - v
. SInc [_ 2 (()X'E/ + ,'xzn) T | 2 (cy'ff k b )] ‘;
v i
]
f i " - o |
o Cone(D) + L8 Ly (0) - (7 2 G (D)) (4.170)
. f
where in Eqs. (4.77a,b) )'.2 and R:.p are given by Fos. (4.1%a,b).
From Anpendix IV, we know that an arbitrary wmodz will have the generic
forms [where subscripts (r", ¢", z") denote componznts alonc the indicated
direciions and (f", §“, 2“) are the unit base vectors in the double-primed
; cable coordinete system)
i ~ {
- “l' T ( ) '\n (n)
Eanz - 52 o" (b) - $? (b) (4.152)
- ,
) _ win) .
5 Cppg = Epun’ (D) (4.18Y)
> Cony, = 2 W (6) - & WM (o) CRES |
. c. = 'H(”)(b) (4.13d)
S dng = e '
- where, in general,
| )
| S5k kg gnet
| U AL WL
( j
! .
—~ » -jk k. 2" Jna"
n iy, g, 2y - li(b) e ozn L,
i
j 4-9
|
A
1 { !

T VTR ey sy TIT TR o g R G TR A R NG TP .




and where
E‘z'.‘) = 0 for a TE mode

ﬁg?) = 0 for a TM mode

and
_gr.') = Fg’.') = 0 for a TEM mode
; " It is easily deduced from the cable geometry that
F .
b . " R . A
_r;; = _{(cos ¢go COS ¢;°) + X(sin ¢po COS ¢',:o) + E(sin °2o) (4.19a)
8 = K(-cos 00 sin afo) + Jl-sin 6y, sin o) + Fcos ¢3,) (4.19)
i
z ~ f;, = =X sin ¢, * Yy €os ¢, (4.19¢)
Substituting Eqs. (4.19a,b,c) into Eqs. (4.18a) and (4.18c), the x, y, 2
f“' components of the vectors Ean and Ecn
o
| - (n) gin)
Canax = -sin 920 "E (b) + cos ¢y sin ¢2° o (b) (4.20a)
- - =(n) gn)
| Cangy = €05 9y, E¢.. (b) + sin ¢, sin $g0 Egu’(b) (4.20b)
=
‘ Cangz = ~cos 62 EXM(b) (4.20c)
Cenex = =510 4 F,i-'u')(b) + cos ¢, sin ¢) "M (o) (4.21a)

o 2"

e e e ne RS




: PR 1 1)) DR i on 3in)
. ! CC?\?,V 505 ¢ ”‘."'" (b) + sin (.'.-9,0 sin (!l(,o I'Z" ()
PP ii(n)
Ceniz €05 Dhy Hpn' (B)

From Egs. (4.20a,b,¢c) and (4.2%1a,b,c), the bracketed expressions

(4.17a,b) are given by

FE = (2 Cone®) # T8 () - 165 x 00 T1)

A TH e TE A T
= X Fpy J FEy Fzhg,
and
Nj’— N V) .‘t +
: Fi "<'o Eanz(b) AR Cypg ) - [» cn"(b)] )
i Vol
_ oo ~ et s o
SRRV ST TP
‘;* where
3 Ex (Z [sin 0 Hé?)(b) - cos &, sin ¢£0 Hg )(b)]
3; ‘ + B8, E( )(b) i.lszl[cos %00 E( )(b) + sin o0 sin ¢;0
.
= + 8, [cos ¢;O'E§H)(b)]) f
| y(n) ( )
FEy ( Z [cos %0 q” (b) + sin %90 sin ¢E ()]
{
+ 0 —(n) ’ " (n)
- bEy Epn (b) - r lcos ¢ Esu’(b)]
4-11
X
|

L c‘

R e I T e e

A L ke 1t i

(4.2}
(a4.71)

in EC(:J.

(4.222a)

(4.220)

EHION

(4.22ax)"’




- . A o\
N FA RO ST Egﬂ)(h) - €OS ¢, sin b E(”)(b)j) -

2 ) "0 ‘0 "z
N~
. [ .
FEZ flolens iy, ”(n)(b )1+ |n ll"n (L)
- Uy{:in S0 Eg”) (b) - cos by, SIN 47, Egn)(b)]
- Rx[cos ¢£O'Ein)(b) + sin Yoo sin ¢; [(n)(b) )
P <nY [sin ¢ 'E(n)(b) ~ €os ¢, . sin ¢f F(n)(L)]
Hx o Lo 4" 20 g0 2"
+ o B (b)
+ |8, | [cos ¢20‘ﬁ;9)(b) +sin ¢, sin ¢y ﬁgg)(b)]
P v gin) ) *
N + d‘y[COS (bQ,O qu (b)] f
Fﬁy (Y [cos %00 én)(b) +sin ¢, sin ¢ZO'E£Q)(b)]
b o, W () - pyleox oy M (0)]
._I' i
in 0y HiW) - cos o, sin ¢E0}l£n)(b)])f
P = (-¥Lcos o3 EX(0)T + 18, (o)
- g Isin ¢, WM (b) - cos o, sin ot AV (b)]
Y 0 " L0 Lo 2"
- B fcos ¢ H(n)(b) + sin ¢, sin ¢" ﬁ(n (b))} £
- X Lo " L0 0 2"

4-12
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(4.22az)"

(4.22bx)

(4.22by)

(4.22bz2)
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.

=y

Frow Egs. (A.370.0), (4.2%,%x,y,2)" and (4.220x,y,7)" we have the fol-

P~
Towing epressions for the x, y, z components of the plapa-vave spastra of
the Tiolds from Slot . with [sde i opropageting aloun the cable:

P[Eill)(gh)]éx'ﬂ . ) . ) ) )
vl _(-J”'\-o-)' ; e-:- i (Fibeos e sl - )i
Z 2 ’
. n
(A (8,01 x
- y
N z
Pk 16, 16(singy ) -Gk (K, Ble o dnet
. e s e ‘e
k L kW
0 Rt " e [0 Lt n
sinc [ == (8, + k, )] sinc [ —, (“y‘ﬁ kb )]
S~
(2) r(n) (5) e(n)epy 4 a(2) g(n)
21 27 23
31 32 33
4] 4?2 43
51 52 53
61 62 63
() p{n)eyy 4 p(2) y(n) (2 p(n) e,
+ 811 It (b) + B]2 H¢“ (b) + 813 hz" (b)
21 22 23
31 32 33
41 42 43
51 52 53
61 62 63 (4.23a,b)
() - g(5) |
Mi° = By = By
(9) o p(2) |
Ay = Bey’ = 8y
~

613 1




i - o) gy

\ 2 3
' AP < ) ) <)ol )

A als) = 8{2) = ¢ 18,1 cos o,

My g *x 15yl sin oy

A%) = Béé) = -(B, cos ¢, + B, sin 40!

: Y
(2) . ‘ - . 20 q(2)
b Rgg" = =Yy sin 0y, = - 2; B

™N e

(£)
22

S

(2) . -
Asz YO cosS ¢£° -

L
Ag =85 =0

M5 = 8{3) =+ 18,1 sinog sin o5 + 8, cos oy

Agg) = B%) = #[8,] cos g0 sin 4, - B, cos 67,

Al = BlY) - (-8, sin gy, + B, €08 8,) sin o5

Y
AS = Yy €08 0y 10 43, = - 1287
0

Y

(2) = n g 0 (il)
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Y
(2) TR 0 o(2)
gz’ = =Yg COS g0 = - T B33

If ¢;o is not the same for all slots and if the slots are not uniformly
spaced along the cable, then the procedure for computation is the programming
of Eqs. (4.23a,b) as given above for each value of the index £, followed by
accumulation of the sum over 2 from ¢ =1 to 2 = Ng, where No is the total
number of slots along the cable. If this technique is to be used, then taking
advantage of various approximations that apply, such as Eqs. (4.la,b,c,d,e),
to simplify the expressions is not very productive, since the effect of these
simplifications on computer time is negligible. A program has been written in
accordance with the above procedure to allow for the possibility that we m%ght
wish to evaluate the general case where the slots are not all of the same
dimensions and not all uniformly spaced both along and around the cable. In a
practical sense, this computation might involve a prohibitve cost in computer
time because NS’ the number of slots, might number in the thousands.

For those reasons, we find it necessary to search for justifiable simpli-
fications in Eqs. (4.23a,b). Fortunately, in the problem of immediate interest,
the cable's slots are all placed at the same angle around the cable and are

uniformly spaced along the cable. Thus, for this case

¢E° = ¢; for all values of & (4.24)

. - 2n (L - 1)
d1o (B - 1) Do =0y, S (4.25)

%0

where %0 is the position of the first slot center, A ¢° is the angular

spacing between slot centers, and since the Ns slots are distributed uniformly

B - A e o g o



elonyg ihe ontire cabie, oA Wy 7.

Lu =L for a1l g (4.7.)

wy = W for oll ¥ (4.27)

It is shown in Appendix V that over the rangz of parameter values of

dirvect inteiost in this study

_ k0 .+ ~ ] ]
sinc [ — (sk}z + kzn)f = 1 for all &, n (4.28)
and
k nt
cins .,.0. A-...?i j‘ - _._p-. - T ~ ] ._.._9‘_ B
sine [ - (.’%y.2 Kb )1 = sinc (=57 ) (4.22)

for all £, n

Using Eqs. (4.24) through (4.29) in Eqs. (4.233,b) we obtain, after

summing over all slots {(i.e., £ = 1 to NS),

FE (503, ,
- )

y = .(_j_.._k.o .

ik 18 |b(1+sinat)  Jng! P
z 02 . e %ginc (-g% ) f

' &
[nin)(ﬁh)]x
h y

e 7~

. e-Jko(kzn”)¢lo _______

L, e A e b e

i -




L
r— -
‘ _ —— (")]
[s,‘,“’ly
G
(g™,
™,
fﬁén)]ﬁ (4.30)
where (with explicit indication of argument 8y, deleted) 1
: [EM, = I8, BN + 6, cos oy BT ()
‘ e J¢‘° =(n) () _ .y wn)
-~ + (18,1 Egu’ * 318, sin 62 Ey0 - gz, Wyl
- Z sin ¢u H(")] S.E.n)
=ity , _
+ &y Lal8,) B + 18, ) sin o T 4 gz, WY
-z, sin o2 HMY s(M) (4.30a)"
2 w E(
[E(")] [B E(") B, COS ¢y Ezﬂ)] Sg")

J¢
+—2-— G5 518, TS0 % 16, sin oy TN - 2 7 A |

+ jz S'in¢" —(n)] Siﬂ)
4217

0 zll




E’ + 32, stn o2 BN s{M
?
F
:
3

‘ \ 'J¢'| _
- & (x gle, B F 8, stn an D) - 7 WD *
7 sin ov F(M7 (M .
- jz, sin ¢} Hgf.‘)] si” (4.30b) ;
(B, = [os, ) B + 2, cos o1 W7 s()

i _
& 18, - 38,) B + 3(8, - 38,) BT s

; ' ‘j¢] _ _
- & [0, + 8)) EED) - y(s, + 8) B @a300)
“ .
} ~ [ﬁi")]x = 8, ﬁs..'.') + 8, cos o) ﬁ;.'.')] Sé") u
io ) _ -
+ 3_2_]3 (¢8| gég) 3 5l8,l sin o8 AW + 5y Eq(,ﬂ)

+Y, sin o) Egﬂ)] si")

0 el T A gy g
+ S [218,] Hyn' £ 18,1 sin oy W00 - 3Y, Eg

+ ¥ sin on ECM] s (4.30d)

[ﬁ;n)]y = [By FS.[.') - B, cos 47 Fiﬂ)] Sg")

4 4-18




where

j[?ﬂ(l-] )/NsJ
. e

Jé
e To

+ = [3l8,] ﬁgﬂ) *+ |8,] sin o Hgﬂ) + Y, Eiﬂ)

- 3v, stn g2 B0y s(0)

-J¢
e lo

t = ttJlel ﬁgﬂ) * |8,] sin o) ﬁgﬂ) +Y, téﬂ)

+ 3 sin o8 BRIy 5(0) (4.30e)"

[, = Cela | MY - v, cos o EL0] 5(M)

ej¢lo
= [-(Bx - jBy) 'ﬁéf}) + J(8, - JBy) ﬁg‘\ ] Sin)
e'j¢]°
g (e + 38 ) F(Y - gs, i8,) Wiy s{m) (a.30f):

2m(2-1)

N ~
S e'jkoﬁhRCOS [¢] OT - d’B]e'jko(kan) [2'"(2"] )/NS]

L

=]
(4.31a)

2n(2-1)

N . N
s - - s .
Sin) . 12‘ e JkoBhﬁc°s[¢1o*"TEf"' ¢8]e-ak°(kan)L2n(g-1)/NS]

(4.31b)




T g o e v

2:(2-1) ~ -
~ N -1k . A2 (1) ’
Pl -, Jh bk 1) (22 (8= 1)/N

N -i% & reosla, +
L e P

S “We
S(n) 5 ) e S
=]

-j[Zﬂ(f-l)/”S] .
.. € f° (4.31¢)

To evaluate Eqs. (4.31a,b,c) in cases where the effect of the factors £

can bo approximated as unity, we can invoke the well known Bessel Tunction rela-

tionships,A"4 .
s Jxcos(9-3) w0 .
glXsin 202 7 9 (x) &P (4.32a)
= et p
p
and
Ipl=x) = (-1)P 3p(x) (4.32b)

vhich, when substituted into Eqs. (4.3la,b,c) yields after interchanging the

order of the summations,

[ ()]
o in(6y,-05 )
sﬁ") = _Z' (-1)P (kg By R) & hotwe
s(n) i
L7
" slele-nmglstatenmgl
-——- e . [ko Kyn R]
251
[k (K, &) + 1]
[k, (k,, #) = 1]

(4.33)




N
N N.-1 S
S S v, 1-12
22-] = z b4 Y- ifz#]

. N ifz=1 (4.34)

, Applying Eq. (4.34) to Eq. (4.33) and noting that [as indicated below
Eq. (4.15)]

ZmR " jan (4.35)
§c we obtain

S (
l so")

w 3p(o, ~dom)
54(»") = 7 (-1)P Jp(ko & ) e lo %8 2 .
sm| P

[<(np) ]
.- So

gﬁnp)

gfnp) (4.36a)

where

(0} . eij[p-kokanR] . e-ZwanR
S =
0

TN b kg ~(Zn g (amA7NgT | 1F on 7 0
e L -

= NS ifps= k0 kan R + 2mm, where m is an integer and op = 0

- .

4-21

¥ A (U B B 1



|
-
A

Y

jonptl-k k. o8]  -2ma R
n
ej(Zw/NS)[p+1-k°kanR] . e-ZwanR/NS

= NS ifps= ko kan R =1+ 2m and a, = 0

j2nlp-1-k K Fl  -2ma g
0 znR"4 n
slne) .| _1-e ¢ ifa #0

j(zn/Ns)[p-l-koﬁann] -2na R/Ng
- e

1-e

~

= Ns ifps= ko kan R+ 1+ 2m and a, * 0

Using as a basis the approximations justified in Appendix V

we will assume that ko ﬁan R, which is a very large positive number, can

be approximated by an integer, i.e.,

ko ﬁan R = q, where q is a positive integer greater than 20 (4.36b)

Also justified in Appendix V is the approximation
-27a_R/N
e NS g (4.36c)

and the fact that

@, #0 in all cases of interest (4.36d)
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At this point, we will test the equations (4.17a,b) from which Eqs.
(4.30a,b,c,d,e,f) are derived, to determine whether they satisfy the Maxwell
equations in their present forms. As noted in Appendix IIl, if Eqs. (4.16a,b)
are consistent with Eq. (I11.6a), that is sufficient to confirm this con-
sistency. Performing the operation (Yo Et X) on E% as aiven by Eq. (4.22a),
we obtain (with the aid of the vector identity EX(EXE) = 2(3,3) - 5(3,2), and
the fact that by definition Zo Yo = 1 and of course gi X §t = 0, Ei . Et = 1):

+ ~. -~
Yofxﬁ‘fﬁ

- BY, B ¢ Gy (B) + Cyp(D)] (4.372)
Performing the operation (- Z Bi X ...)on Eﬁ'as given by Eq. (4.22b), we

obtain

-, _gi X :Fﬁ = } + _g*‘-[zo(gi Ceng(b)) = Cppe(b)] (4.37b)

Performing the operation (gt - ...) on E% and Eﬁ, we obtain

gt - -2 I8+ Cpg(B)] = €y (b) (4.37c)
g - BE =Y I8 Gy (D)1 + Cyng(b) (4.374)

It follows from Eqs. (4.17a,b), (I11.6a,b,c,d) and (4.37a,b,c,d) that

the conditions required for consistency with the Maxwell equations are

z [s* Ceng(B)] = Chpg(b) = 0 (4.38a)




Rl e et N o o

Yo[.fii + Cana(P)] # Cypg(b) = 0 (4.38b)

For the particular case of interest, Eqs. (4.18a,b,c,d) translate Egs. (4.38a,b)

into the form

Zn ( an "( ) =
2, BNt - ) - 2, KV G)EE - g - TR =0 (4.30)
v, B et - ) - v T waet - g + W) <0 (4.390)

For TEM modes, where'féﬂ).'fgﬂ),'ﬁiﬂ),'ﬁgﬂ) all vanish, Eq. (4.39a) be-

comes
EN )1 TEM « 2 w0 o) M gt - 3) (4.40)
and Eq. (4.39b) is an identity

For TM modes in the special case where the boundary condi:ions require
that E(")(b) ='E£9)(b) H(")(b) = 0 and the TM nature of the modes requires
that H(") = 0, again Eq. (4.39%) becomes

EN o)™ = 2 @B ™igt - 2 (4.41)

and Eq. (4.39b) is again an identity.

For TE modes, in the special case where the boundary conditions




. R e 11 P e e e e e Mt o o I 4l -

require that
o) = 1M (b) = 0
. and the TE nature of the modes requires that Evh) = 0, Eq. (4.39a) becomes
E )1 = 2 WD )18 - ) - 2 AN () IEBE - g (4.42)

and Eq. (4.39b) is an identity.

If E* were along 2", this would imply a plane-wave propagating along the
cable.

2 At this point we will make an adjustment in the expressions (4.17a,b) and
the subsequent relationships derived therefrom. In effect, we are forcing
Eqs. (4.17a,b) into consistency with the Maxwell equations in g-space (i.e.,
those of a plane-wave with propagation vector 8). Another way of looking at
X this is to consider it as a matching of the fields just inside the slots with
B . the fields just outside the slots. The latter must obey the conditions (4.38a,b),
which in turn must be equivalent to the vanishing of the last set of terms in
Eq. (III.7), since both of these conditions imply consistency with the g-space
Maxwell equations. Such consistency is required of the plane-wave spectrum of
a field. The original assumption that the fields on the slots can be approxi-
mated by those of the wave propagating along the cable as if the slots were
not present is being replaced by the assumption that there is a small per-
turbation due to the slots. This perturbation changes the fields on the slots
Jjust enough to force the plane-wave spectrum of the fields at an arbitrary
point in space to obey the Maxwell equations for a plane wave with propagation

t
é — vector 8. The reason the original plane-wave spectra (4.17a,b) did not show
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Y

{ consistency with these equations was because of our insistoace thel the Tields

on the slot be exactly vqual to those prepaqating down a slotless cable at the

~
slat position. Both of chesz sets of planc-uave spectra (4.172.b) awd those ‘
to b2 given in what follows are rough approximations to the truth. It is es- :
serted that the latter are betier approximations than the forner,
The indicated adjustment in the original forms (4.17a,b) counsists of re-
definition of EE and‘Eﬁ in Eqs. (4.22a) and (4.22b) respectively, as follows:
<t 1 + . + *
B~ (2 Conal®) - 87 x Copg(0) + g% 2,06 - Conn®I)F (2.030)
5 ot oy oot . R
i "(Yo Cang(B) = B X Copg(b) - &7 ¥ [ Eanz(b)])f (4.43b)
’ Applying (Y0 gi X ...) to EE as given in Eq. (4.43a) yields
!
! ' A -
< Y, 8 x Ff = Fy (4.44a)
;‘\ \ Applying (—Z0 Ei X ...) to Eﬁ as given in Eq. (4.43b) yields
+ = _.:’:t
Lo B x Fy = F¢ (4.44Db)

Applying (g* - ...) to Ef and Eﬁ‘yields

3 g =0 (4.44c)
» sﬁ . 5} =0 (4.44d)

The equations (4.44a,b,c,d) establish the consistency of the forms of Ei(sh)
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and ﬁt(Bh) implied by Eqs. (4.43a,b) with the Maxwell equations (T11.6a,b,c,d).
> >

T The quantities replacing FEx’ cees EHz in Eqs. (4.22a,b,c,d,e,f)"' are:
(F )™ =(E§.)[o] v B8, ] cos ,,]
+ Eﬁﬁ)[ﬂy cos3 ¢lo + [B [ sin %40 sin o ] + H(")[O]
—(n) - . 2 : 1o
+ Hyo Lz (1 - B,) sin ¢y + B, £ cos ot
+ ﬁi?)[zo{—sin ¢£0((1 - Bi) cos ¢y - By By sin ¢£o)
*ple,l cos of }]) (4.45a) 1
!
t
Fryen _(g(n) g(n) ;
Fe )™ (60107 + S Eeln, | sin ¢,
o~
o + Ein)['sx cos ¢y +18,] cos ¢, sin ¢;o] + Hﬁﬂ){01
]S’. + ﬁ(ﬂ)[-zo{(1 - 85) cos ¢, * B, By sin ¢20}]
’ _(")[ Z,{sin ¢g (- Bs) sin ¢5 = By Py €OS ¢20) ‘

%
* 18,18, cos ¢;o}]> f (4.45b) -

yon =(€$P)[0] N g( )[ (8, cos ¢, * By sin ¢20)]

o pemieict e ri b

+ E‘ﬂ)[sin ¢Eo('8x sin ¢, + B, COS ¢g°)]

2 y
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( ' . - .
+ u( )[0] " ”.")[+20|Bz|(--{’,x “in g, ﬁy cos ézu)J

Y '(“) g : 2 " , . "
+Hou [ZO{-]BZI cos ¢y * I6,] sin ¢ (v, cos

2 Y0 “‘)Eo

+ Gy sin Qno)}])fi' (4.25¢)

() (€000 + ED0v (1 - 62 sin g+ 3, 5, cos o))

“(n) : " ?‘ .
+ EZu [Yo{s1n ¢£0((1 - By) cos %0 Bx By sin ¢20)

- - . -t
+e.08,] cos g0t ¥ HiE)IOJ + H$n>[1}azl cos ¢, ]

+

fsy S 010 IB | sin 050 ST 0} ])”‘ (4.45d)
= 2 .
(Fi )" ( (n)[O] + E [y {Q - B €os ¢, * 8, By sin ¢2°}]

+ Eﬁﬂ)[Yo{sin ¢;O((1 - 85) sin ¢20 - By By cos ¢20)

F 18,0 cos 63T + AL0] + WDV Ekjs, | sin ¢, ]

+ (u)[ B, COS ¢g * |8,! cos Y20 STN 2f ])f (4.45e)

(?ﬁé)ﬁ" =(E$P)[0] + [( (+18,1 Yo(-8, sin o, + 3 cos ¢, )]

X ~0 Y

+ n)[ Y. {-18, l cos ¢y * |8,| sin 9508y €08 &y

+ a sin %0)}] + H(n)[O] + H( )[ (B cos ¢, * 3 sin %O)]




An)e . . N R s
+ W Esin gl (<R sin 4+ 130 cos f 4.451]
Hptlsin e (-8, sin oy o+ 5 cos ¢ )1 (4450

Tre case actually progiairied For the computer wos that wierein ¢¥v is

A ¥3

conatant end tha stots are spaced cqually atong the cabla, resulting i the
conditions (4.24) and (4.25). For this case, the expressions analuosus Lo
fns. (4.32a,b,c,d,e,f)' [obtainad from Eqs. (4.45%a,b,c.d,0,F)] are as fol-

Tows (in abbreviated notation):

~(n) (n)r,=(n) ej¢]0 (nYp wn),y - e—j$]o (), c(n)
£V, = sLEM) 1, + S snE™ 0, 0 f s )
y y y Sy
Y4 VA Z Z
(4.46a)
by oy j¢70 = ] ( i
My = sy 3 s &0 sE™) g e e sl )
Ty oy y oy
4 Z ¥4 z
(4.46D)
vhere
LEM), = (H 2,r 38 16,1+ FU [ 6,7 ) <00 o
y
? 8,18, | -8,
2
i 18,1° ] | 0 | (4.47a)
[(ﬁé"))o]x - () v [os,00,07+ BT 8] ) o= ¢
y
‘ To, 18, -By
i Ir”zl2 i | 0 | (4.47b)
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L

where

[E™),), = (BT as,) Y+ EW [H1s,)  sineg
y
z +jls, | *8,l
- \ s --
| -(By-3ByJ | 3(8,-38,)]
(n) ; T+5M0 7 ¢
* “@“ %o r -3A *HpT 2, A
- JA¥*
Ay Ay
| +318,1(8,-38,) | i # ezl(ax-jay)_

- 2
Ac= (1-8) + 38, 8

< (1 - a2y 4
Ay = (1 -8))+ 38 8

(M), = (RO [ 2s,l Je AR
2 *ils,l
| (5,038,

e BT ]
Ay

| #318,1(8,-38, )]
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ls,l ]
18,1

| 3(8,-38,)

(4.47¢)

sin ¢;

q
A

-JA’y“

J sin ¢"
¢o

L;Ile(Bx'JB )_

(4.47d)

sin ¢3




3 =(n =(n - o i am
u [(Eé ))_]x = Eé..) " *i8,l T+ 'L'i.'.‘) +il8,l 7] sin o)
. - y
‘ +il8,| *g,
| -(8,+38, ) | -3(8,+i8,)
+ ‘ﬁd(,.’.‘) 2, [ A 180z -ar 7 sin os
Ay -3Ry
[ %318, 1(8,+38,) | | +18,1(8,+38,)]
(4.47¢)
(HM™) 3, = (B[ 18,0 T+ RN sils,l 7 sinog
: y
P T : +il8,] +8,|
5 | -(8,+38,)] | -i(8+i8y)
;i\
Y|
i —(n) B : b “(n) [~ : i
B * E¢" Yo -3A% * B Yo A 1 sin % [
-3 . \
ot A, JA, ’ .
. ¥
. | +i18,[(8,+38, )] | HiB 18,38y
L i
' (4.47¢) :
Specializations of Eqs. (4.46a,b,c,d,e,f) to the case of TEM, TE and T™
modes are presented below. These are based on the forms of the fields for
- these modes developed in Appendix IV.
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TEM, TM Modes

' -~ These fields are given by Eqs. (4.46a,b), where
‘ ggng =(n) g"su;
i < =in
' [EM) L, ™ =1, )3 ™ =0 (4.482)
' Ty Ty
r4 4
)
EM, ™ =z B[ -, ]
Y
-A;
| +i18,1(8,-38,) | (4.48b)
L) (7]
-\n -
;. (G, 0.0 ™ =z, B0 [ a
| o
‘ ~. '-Ay
L #118,1(8,+38,).] (4.48c)
()
: ~(n
N CH, 0,30 ™ =y, Fﬁﬂ)(b) PI'BZI ]
. Ty
: %18,
.-(sx-sz)J (4.48d)
&
3 m ()
-in
LA, )3, " =y, B0 [ 4ls,
: Ty
g z *ils,|
- - (8,+38,) | (4.48e)

m————— .
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P an

v
E0ho) = EN )1 - o0 for TEM mode (4.48f)

[from Eq. (IV.4a)], where Vo = voltage between inner boundary at r" = a and

outer boundary at r" = b,

A

™ :
™ n jk
) = ER 1" - - gy = 2tk
cn

b) (4.489)

for TEn mode

[from Eq. (IV.11b)] where all quantities in Eq. (4.48g) are defined in
Appendix IV.

2

Ag= (1-8,) + 38, 8 (4.48n)

= - 2 i
Ay = (1-82) + 38, 8, (4.481)
Y, = wave admittance (4.485)

For TEM mode
€ca

Y = T Sa” complex dielectric constant

0 of cable material (4.48k)

Yy =y "= —rc-‘- (8.482)
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For TEﬂ modes :

=(n) _(TE
(E, )ox H(f.')(b) Z, +3x|gz|'
Ty
: *8, 18,
i I8, 12 | (4.49a)
~(n)_ (TE,) )
[, )ol, ™ = Ao s,
Ty
b4 'Bx
| 0 | (4.49b)
=n) (TE) ]
[(E+ )+]x nt . Or -ij ;y "’E’(I"‘)(b) (b) sin ¢u‘
y
z *
-Ay
_i‘”BzHBx'JBy)J (4.49c)
Hn) (TE) ST
(e, L 7 =g A ’Y,, "E(b) + A (b) sin %-‘
y
Z
-Ay
.‘J’lezl(e;jey)l (4.494)
=(n) (TE)) -, TE
[(Hi Jey =1 8.l Y, n fﬁ.f.‘)(b) - Jﬁge)(b) sin ¢;l
y
: 318,
[-(8,-38,) | (4.49€)

K
4



(, 00, " = T sl ] o o) + 5l (n) sin o
) y
2 +iln, |
|- (8,+38,) (4.49¢)
TE
in k
B ) = B0 T B by (h9g)
n .. a2
YW '\'n(kcn b) kcn
TE,
(")(b) = [’H(")(b b 'ﬁ;fﬁ‘c';‘ﬂ Ly (kep b) (4.49n)
(TEn) kZl"l .
Yoo Tuh (4.494)

Other quantities used in Eqs. (4.49a-i) are defined in Eq. (4.46h,i,J) or in
Appendix IV.

The forms (4.48a-2) and (4.49a-i) are those actually programmed and
hence on which our numerical results are based. However, in the computations the
sums over the cable slots, S(nl _are not treated through Egs. (4.33) through

(4.36d). These expressions would be strictly valid only if * were approximately

unity. In the general case where f* is accounted for, the sums are replaced

by integrals and a different technique is used for their approximate evaluation.




First, wo take advantag> of the fact that, in (4.31-a,b,c), paramater

{
. S
£ values in all cases of interest are such that [see (4.36b)]:
E ol ,.-{') r
; | kolkypg @1 > 1 (4.50)
[iA
; Equation (4.50) is used to justify the approximation
g sé“) 2 si“): sf“) . (4.51)
z, A
% From (4.31-a,b,c) and (4.50), where
- ot =g+ Bl (4.52)
’ ]U s
3 we have
} -
4 ; 2% i Ar I .
- Jkgclepcos{s'-o )+ k o']
p Sén) . Sin)= an) . gﬁ J do'f (0')e " © -'h 8’" “zn
“ ' 0
(4.53)
r } ~
where the dependence of ¥ on ¢ is explicitly indicated.
_ Noting that
i" - ) "; i gﬂ .
9 K™ Kanr "I T (4.54)
b where kan is the real part of kzn and o« is the attenuation along the
1 cable, we can express (4.53) generically in the form
-,. ! _
8 { where ¢'U S )e(er)
g ! J(k_Ze)y(o*
2R S, = [1 ]J do' gy (3)e © (4.55)
= a s 2
L
and where
|
4-35
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* 7~
(0') = = [hy o6 + 0y cos(i = 4.)]
(s ) “nf 8]
g,(c )= e ¥ =
a R
) R 1
0,(+') = e )

~

- ~ -
x (0 cosp-7cos ') + y(o sine-{%in o')+ 2(7)

v
n

T Ty T T
R = \/??? + ¢+ z? e 2 pcos(e! -¢ )

+
R sylo cos(s-0.) -0 cos (8" 4, )1 ¥ [5,] 2]
R = _mm_ﬁ__L:;_*““;:TTC_“j
\/f{% p? + 22 - 20 cos(s’ -6 )
|
: ~ Since ga(d) and gb(d) are both real, and since
koﬁ? >> (4.56)
o for all cases of interest, the integrals Sa and Sb are hoth of a tvpe that
;gf can be evaluated approximately by an asymptiotic form given in Reference A.5,
b pages 276-276. The method is based on a form of the principal of stationary
h
S phase, but the case involved is that wherein there is no stationary point,
i.e.,
Q% (¢') # 0 at all points (4.57)
N4
Since )
| 9_\])_(4’) _ . , -
i ds S T LU CRR P R S (4.58)

and since ﬁan > 1 in the cases under consideration, and IBh sin (¢'-¢B)| < 1,

4-37

AR R ey PGy 1 vy W RS N g e - wh ooy s S



gt it Tollows that (4.57) must hold. Since (4.55) also holds in a1l cdses
of interest, the method is applicable.
The asymototic solution is [Reference A.5, page 278, Eq. (6.57)]:
[ iy wley) ik, ele)) ]
Tt [ e g, (4y) - -2 9,(¢)
gk [du, )] b [_d_zm;_}
¢ 3!
=gt ' ! '
_ v ¢'= 0
(4.59)
vhere upper and lower limits ¢b and ¢L for Sa and Sb are dependent on
the forms of ga(¢') and gb(¢') respectively.
R
i Another term was included in the computations to account for tha ﬁf
} term present at points very close to “he cable. This teria was also
~
evaluated by the above wethoc.
ik\
23
3
il
-
—;’J 4-38
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‘ 5. PLANE-WAVE SPECTRAL REPRESENTATION OF GROUND-REFLECTED FIELDS
~

We can do the ground reflection problem for a particular spectral compo-
nent (i.e., particular values of Bx and By) and having accounted for the
boundary conditions for each such component, we can then intzgrate over all
Bx’ sy. This, of course, reduces the problem to the classical case of plane-
wave reflection from an infinite boundary between two medial‘-"1

We will now outline the method of analysis which was carried out to obtain
the (x,y,z) components of the reflected wave fields and to construct a matrix
relating the reflected fields to the incident fields. Since the literature
is replete with solutions of this problem there is certainly nothing new or
original about this portion of the analysis.

Consider incident and reflected wave electric and magnetic field compo-
nents for a particular value of (Bx, By) where incident fields are denoted

— by (Ei’ 51) and reflected fields by (E ., ﬂr). We must also include the fields
of the wave transmitted into the ground, denoted by (Et’ ﬂt)'

For fixed values of (Bx, By) (seé Appendix II) the horizontal components

of the electric field above ground (in free space) are:

. Jk(BxBy) - -3k[B,lz . JkIB,l,
Eix *Ex " @ L *Ex @ ] (5.12)
y y y y
z z z z

(where it is noted that the incident and reflected waves propagate downward
and upward respectively).
The horizontal components of the electric field in the ground (z < 0) is

(note downward propagation only)

| . aeny) gk

—~ Egy = Egy (5.1b)

tx
y
! z z
|
; 5-1
|
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where

Y, ,J\jf_ (65 + 875)

and v is the complex refractive index of the earth, given by

(5.2)

vavR+ij

where

€
VRS;I;‘}'*'I“’(weUER?
0

€
vlz/:}-[.]“ﬁ*'(we:eR)z

and where €q = relative pemmittivity of ground, € = permittivity of free space
= 8.854(10']2) farads/meter, u, = 4 (10'7) henries/meter = Magnetic permeability |
of free space, assumed to be also that of the earth, o = conductivity of ground
in mhos/meter. The horizontal magnetic field components are:
z>0
e, Jk(B x+8yy) -jkig,lz .
= [-2 X z E
Hix * Hex T (e (8 Eiz * 8,1 )
iklslz . .
te (8, Epy = 18,1 Epy)] (5.32)
“—r
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e, Jk(8 x+6yy) -jkis_|z -
s [ 2 X - z F
Hiy * Hpy ‘f b, (-e (18,1E;, * B, Eyp)

JkIBzIz

ve 2B lE, - 8, £ )] (5.30)

e, Jk(s x+8y.v)-jkv 2
/ 0 X 2 < ~
Hey = ug e (By Eez v Y2 Ety) (5.3¢)

e, Jk(Byx+B y)-Jkv,z .

2L (-v. 8 Etz) (5.3d)

Hey = T z Stx ~ Bx

To determine the vertical components of the electric field, we invoke the

equations

V- E; ajk(g, E, + By Ejy * 8,] Es,) =0 (5.4a)
r r r r
V- E adkis, By + 8 By - vy Bpp) = 0 (5.4b)

Solving Egs. (5.4a,b) for E,,, E.,, E,, in terms of Eix’ Erx’ E,, and equating

rz’
y y y
the tangential components of both electric and magnetic fields at z = 0, we

arrive at the set of equations:
(18,177 Epy = (1817,) gy = -(18,17,) Ey,

(18,1%,) Eny = (8,1 ;) By = -C1B,17,) Eyy (5.5b)

5-3

SIS N

. .
B o i A N ol e o e e I




£ 2 2 2 g2 z
(8,8,7;) Ep * ((1 - 8) v,) By + (8,8, [8,1)E,, + (V-8 )8,[) Eyy

= (8,8,Y,) By + ((1- 8D v) B (5.5¢)

2 = 2 2 _ 2 z :
(V- 8)) v,) By + (B8, Y,) Epy + (V" - BB, () By, + (B,8,18,1) €y

2 ~ ~
= (-8 Dvy) By + (8,87, Eyy (5.54)

Solving Egs. (5.5a,b,c,d) by Kramer's rule yields the horizontal compo-

nents of the incident wave, as follows:

- Y, - |8,1 1 2 ) )
= 2( 2 . {([85 -5 (1 - 8%+ |B.[V,)]E,
rx+ ( Yz + TBZI (" - Bi + |BZIYZ) [ X 2 b4 l zl z ix
+ [8,8] Eiy-} (5.6a)
Yz - I8l 1 .
Erys = 20 3575 {[8,8,] E,
rys = & (AR Bg 5% [8,8,] Ey.
¥ [szr -7 (1= &+ 18,171 Eiy-} (5.6b)

where the minus sign on Eix- indicates downward propagation of the incident
y

wave and the plus sign on £

rx+ indicated upward propagation. Invoking Eq.

y
(5.4a) for both incident and reflected wave fields we obtain the vertical

component of £ . from Eq. (5.6a,b)
ir




o —— e o

—~

=.(\(z-ll?,
vz * I8

2|

2
1-8,- lele :
zl 1 - si + IBZIYE

E

(5.6¢)

rz+ i2-

We can easily determine the magnetic field components from (5.6a,b,c):

-~ € -
= [0 E . -
Hexs J“o (8 Epge = I8zl Epyy)

+
o 2 8T T g2+ g, ly)

((-28,8,8,) Eyp
2 1 2 =
+ (208|108, - 5 (1 - 8, + [8,[Y,)]) E

iy-

+ (-8,(1 - 82 - [8,1v,)) £, (5.72)

. [e - N ﬁE Yy = 18,
= [0 - = /9 (.2 z 1
Hry+ o (lBZIErX+ P Erav) Mo ( 2t lBiTr) (1 - ézi* 18,1v,)
z

- (218,82 - 3 (1 - 82+ 18, Iy )]) Ey, + (208, 18,8)) E;

+ (-8,(1 - 82 - 18,Iv,)) Ey, ) (5.7b)

~ €0 (5. E £ € , Yz = |8,] p p
Hpze u By Epys = By Epge) = ﬁ;'( Y, ¥ 16,1 )8y Eqx- By Eyy.)
(5.7¢)

To compare Eqs. (5.6a,b,c) and (5.7a,b,c) with well-known results on

the reflection coefficients of plane waves incident on an interface between

5-5
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two uniform semi-infinite media, consider the propagation vector 8 as in the
->

x-Z plane, i.e.,

= (5.83)
Qy 0
By = Sin 8, (5.8b)
B, = cos eB (5.8¢c)

Consider first the case of horizontal polarization, implying that

E1x— =0 (5.9a)
Eiy— = Ey_ (5.9b)
Eiz- =0 (5.9c¢)

where Ei is the complex amplitude of the incident wave. It follows from Egs.
(5.8a,b,c) and (5.9a,b,c) that Eqs. (5.6a,b,c) take the form:

B S (5.10a)
E,

3 Y, - cos|®

Yt . (R 19| ) (5.10b)
E1 YZ + COSIGBI

E

E—"zi =0 (5.10c)




2
her = - sin® ®
- where vy, = fv sin® 84
The results (5.10a,b,c) are consistent with well-known results on re-
. flection coefficients with horizontal polarization [e.g., Stratton, p. 493].
From Eqs. (5.9a,b,c) and the Maxwell equations, the incident wave mag-
netic field components are
~. eo ~ ~
Hiye = q 18, Eiy- = Hy_|cos 6] (5.11a)
~ uo ~ s
(implying that Eiy- = —o Hi') ' .
H{y_ =0 (5.11b)
~
V annd - go - -
Hypo = (q By Eqy. = Hy_ sinegg (5.11¢)
(implying, as does Eq. (5.11a), that Eiy- = e—"- ﬁi-) where H, is the complex
0
amplitude of the magnetic field vector of the incident plane wave.
From Eqs. (5.9a,b,c), (5.11a,b,c) and (5.7a,b,c)
H Y, - |cos 6,]
rxt (2 8 ) cos o, | (5.12a)
ﬁ1_ Y, + | cos eB] 8
Hy.
PPN i
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Hpps Y, - lcos 8g]

f,. = o 7, ¥ Tees 981 ) sin 8g (5.12¢)
For vertical polarization

Eiy— =0 (5.13a)

Ei,. = E;_ |cos 6 (5.13b)

E;p. = E;_ sin e, (5.13c)

where Ei- represents the complex amplitude of the incident plane wave field.

In this case, Eqs. (5.6a,b,c) are:

Erx+ L Yz |cos ee% [sin? 8g - |cos gglv,] cos o |
B Y, + |[cos © . 2 8
E;. z B [sin® 8g + |cos eﬁle]
2
v©|cos 8,] - ¥
= -( B Z Y|cos eBI (5.14a)

v©|cos esl +y,
E
T"ﬂg 0 (5.14b)

i-

Epzt . Y, = |cos eB' [sin2 8g - |cos eBle] cin 6
= r
Es. Yo + lcos 8] 7 rg4p2 8g + lcos gg4lv,] 8

2
volcos 8,] - v
* (= B2 in 0 (5.14c)
v Icos‘eel ty,
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From Eqs. (5.9a,b) and the Maxwell equations

=0 (5.15a)

€ €
’ = _0 - [ - E % - o 2 2
Hiy- juo ( 'BZIE‘IX- BX E‘ll-) ’uo Ei_(COS eB + sin eB)

€ = ~ _
i el R (5.15b)
()
- U ~
(implying that E, = - |[—H, ).
j- o i-
& Ry, =0 (5.15¢)
! -~ 1
: Substitution of Eqs. (5.13a,b,c) and (5.15a,b,c) into Eqs. (5.7a,b,c)
yields
s . ﬁ
N L S, (5.16a)
i Hi_
H y, - |cos 8,]  sin® e, - |cos 6|y
Qg 1| ~—r¥: = -( z T 8 )( _T_L__—&_z )
. : Hs _ Yz [cos eBl sin® o, + |cos egly,
t:.; 2
o vlcos 8,] - ¥
i . 2' A (5.16b)
v©|cos eB' +Y,
i
—_ . (5.16¢)
H,‘_




.2
E1y-[s’“ eB(-cos 2¢B) - |cos eBIYZ]} (5.17b)
A g
where Yz = Jvz - sin2 e8
. 2
- |cos 9| sin® 8, - |cos 6gly, .
-~ B Z
3 = -sin 6 ( ) Eso (5.17¢)
rz+ B y + Jcos eBT' sind 0g + |cos 93|Yz iz

where Y, ® vz - sin2 e8

The results (5.16a,b,c) are consistent with well-known results on re-
- flection coefficient with vertical polarization [e.q., Stratton, p. 494]. LJ
It is sometimes convenient to write the results (5.6a,b,c) and (5.7a,b,c)

in terms of the angles (98' ¢B), ie.,

- |cos 8 | 1

Erx+ Y + |cos S*T

2
E;. [sin® e, (cos 2¢,)
[sin? 8g + lcos 6,1v,] X B 8

- leos 8glv,] + E - [sin? 8 sin 20,] (5.17a) '

E L Y, - lcos g 1
ry+ Y, * [cos 931

. 2 .
{E;  [sin® 8,(sin 2¢,)]
[sinz 8g * |cos eelyz] 1x= 8 B

xi

jE; - |cos 8] i
= { ) ---
rx* Yz * lcos eBTi (sin® 8g + |cos eslyz)
{(- |cos eBI sin? 8, sin 2¢B) Eix- + (-]cos eBI[sin2 es(-cos 2¢B)

-~ . 2 -~
- |cos eBlyz]) Eiy- + (-sin 0g sin ¢B[s1n 8g - |cos eBIYz]) Eiz}

(5.174d)




i Yy - ’COS BB] 1
ry+ Yo ( ‘T |cos eB‘

I

(s1n2 8 + | cos eB‘Yz)

« {(|cos egl[sin2 ee(cos 2¢B) - |cos eBIYz]) Eix-

2 ~
+ (Jcos 8g| sin” 8g sin 26,) Eiy-

+ (-sin oy cos ¢B[sin2 8g - |cos 8g]v,1) Eiz-} (5.17e)

: €, , ¥, - lcos 8] - N
rz+ = I.l-; ( m) sin 98(5'“\ ¢B E'IX’ - COS ¢8 Eiy-) (5.]71:)

It is convenient to write Egs. (5.17a-f) as a pair of matrix equations of

the form
-~ -! pon- -1 !-
Epxt Reyy  Rerz Reis | Eix-
B {Erye | ™ [Pzt Rezz Rezs Eiy-| = Rel B
Epzt Reqv  Resz Ress Eiz- ]
- - be . L
(5.18a)
5-11
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e o

Hyxs Rymy Rz Ryis
Heo = By = [Ru2t Ruz

Hpze Ru3y Rusz  Ryss

L. — L

Reak = ColBy By Reak(Bx8y)

i .
Rugk /éi: ColBysBy) Rygy(Bee8y)

Y, - 18,l ]

Ry23

C (8,,8,) = (
BB T

Bh 2 /63 + 83

2
By -

07

2
ET1 B, - [8,lY,

A~

£12 ° REZ] = 28xBy

>

P - 2
n

2 2
E22 By - Bx - IBZIYZ

3>
]

2
£33 = 8 - [8;1Y,

Renq = R

>
1]

£13 ~ Rg23 ® Regy = Rggp = 0

Rypy = 'Z'lesxey = -18,] Re12

LTIEIN

(5.18b)

(5.19)

SR




. 2 .2 .
. . RH]Z B 'lszl[ey - By - lele] 'lsz'ﬁszz
: Riyz = -By8y - 18,1v,] = -8, Regq
Ryz1 = 18,108, - By - 18,17, = 18,1 Reyy
Rovn = = (5.19)
RHZZ ZIlesty lez!§E12
(cont'd)
~ _ 2 _ ~
Rypz = -Bx[8y - 18,1v,] = -8, Reas
Ryar = B,[8y * 18,1v,]
- 2
) Ruz2 = 'Bx[Bh * IBzhz]
t ~— A
Rysz = 0
i
|
{
P

LG o I O U e - =~



6. FIELDS INCIDENT ON THE SCATTERER-COORDINATE TRANSFORMATION
AT INPUT TO SCATTERING PROCESS

The scattering theory that we are using confines itself to the scattering
of a plane-wave by a body. The spectral fields as given by the superposition
of Eqs. (4.16a,b) (the fields associated with the direct wave from the cable
slots) and Eqs. (5.18a,b) (the fields associated with the ground-reflected
wave from the slots) are the fields of a plane-wave propagating in the di-
rection of the wave vector §+. Denoting these plane-wave fields by Ei(§+)
and Ei(§+)’ the next phase of the solution to our problem is to evaluate the
scattered fields when the incident fields are Ei(gf) and Ei(§+).

Before we can do the scattering problem, we must perform certain coordi-
nate transformations.

The Barber scattering program, which will be discussed in Section 7,
contains two coordinate systems. (Qne is the "lab frame" and the other is the
"body frame." The diagram of Figure 6.1, due to Dr. Peter Barber, illustrates
the two systems.

First, note that Figure 6.1(a) and (b) which illustrate the "lab frame"
(whose coordinate axes are denoted by X s Vs zL) and the direction of the
incident wave with respect to the lab frame., The incident wave travels in the
+zL direction in the lab frame (hence, §+ is/1n the +zL direction). The
electric field vector of the incident wave, denoted by Ei(§+)’ Ties in the
(xL - yL) plane and is at an angle &, with respect to the XL axis in a clock-
wise direction, looking along the *7 axis.

The "body frame" [Figure 6.1(c)] is characterized by a set of rectangular
coordinates (xB. Yg» zB). The scatterer is pictured as a spheroid with its

axis of symmetry along the +2g axis. (This is only for graphical convenience;




(b) Direction of J
incident wave
with respect to
lab frame coordinates

(¢) Body frame

b %3

b4

Figure 6-1. Coordinate systems for Barber Scattering Program
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the theory does not require that the scatterer be a spheroid orfented as
shown.) The direction of the +zp axis in the lab frame corresponds to two

spherical coordinate angles, a polar angle ©_ and an azimuthal angle ¢p, as

shown in Figure 6.1(a). ’

Our first task is to develop a transformation between the body frame and
lab frame coordinates.

A simple way to do this makes use of the diagrams of Figure 6.2(a), (b),
(c), and the accompanying equations (6.la,b,c), (6.2a,b,c) and (6.3a,b,c)
appearing in the figure.

From Eqs. (6.1a,b,c), (6.2a,b,c) and (6.3a,b,c), the body frame coordi-
nates of a point (xB, Yg» zB) in terms of the lab frame coordinates of that

point (xL, Yy ZL)’ expressed in vector-matrix form, are:

[:B] = [MBL][.';L] (6.4a)

and the inverse form

[r 1= [Mgllrgl




(a)

Coordinate system (xL yoz)
’

Point P. has coordinates (xL.yL.zL)

~

25 is unit vector in ‘Zp direction.

Y' oP

x

- 2
AN

Rotate around Z axfs through angle
Point P has (x ',y ',2, ') coordinates
(' oy taz ) 8+ Such that in new system

X
yL‘ =¥ sin °p + Y c0s °p (6.1.b)

= xcoso + ysine,  (6.1.2) (e y's2) zg Ties in(x "=z ") plane

zL'szL (6.1.¢)
Figure 6~2. Transformstion between lab and body frame
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(e)

i

71 ]
i 91 g

e v vy - o L.

x! X

Point P has (xL“, yL“, zf) coordinates:

Rotate around yf axis through angle

" g '
XL XL COSGP p

| yL"ayL' (6.2.b)

- 2, 'sine (6.2.a) Op» such that +z " and +z; directions

p
are parallel.

z"=x 'sing_ + zL'cosep (6.2.c)

Lt p

(C)) Rotate around zﬁ' axis through angle
¢g counter clockwise looking -zBdirection.
Point P has Xgs ¥gsig (body frame

coordinates)

- X3 = x| "cosep + ¥ "sinog (6.3.a)

yB’ xL"sin¢F + yL"cos¢F (6.3.b)

2® zL" (6.3.¢)

‘ Figure 6-2. Transformation between lab and body frame (cont'd.)
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[y, 1 =

(M

18] =

I.—(COS 8 cos ¢p cos ¢F

P

- sin ¢p sin ¢F)

(-cos ep cos ¢p sin ¢p

- sin ¢p cos ¢F)

(sin ep cos ¢p)

L.

-

(cos ep cos ¢p cos op

- sin °p sin ¢F)

(cos ep sin ¢p cos ¢

+ ¢cos ¢p sin ¢F)

(~sin ep cos ¢F)

o

(cos ep sin ¢p cos ¢

+ cos ¢p sin ¢F)

(-cos ep sin ¢ sin ¢p

+ Cos ¢p cos ¢F)

(sin ep sin ¢p)

(-cos ep cos ¢p sin ¢p

- sin °p cos ¢F)

(-cos ep sin ¢p sin ¢

+ ¢os ¢p cos ¢F)

(sin 8_ sin ¢F)

p

6-5

(-sin 6

P

sin
(ep

(cos ep)

(sip ep

sin 6
(sin D

(cos Bp)

cos ¢¢)

sin ¢F)

(6.4c)’

Smany

cos ¢p)

sin ¢p)

(6.4d)"




We can use Eqs. (6.4a,b) to obtain a vector-matrix relationship between

the unit base vectors in the two coordinate systems.

Note that the elements

of [fB] and [EL] are coordinates of an arbitrary point in the body and lab

coordinate systems respectively. The unit base vector along the Xg direction

(for example), denoted by EB’ terminates at a point P which has coordinates

(1, 0, 0) in the body frame.

- - ~
XL (M g)y
| = | Mgl
2 M g)s

L L

-

Mglyy  (Mpglis

(Mglap (Mglas

(Mglzs (Mpgl3s

-

0

-

L

In this case, Eq. (6.46) would read

- A
(M g)y

(M gly

Mgly

h L

(6.5a)

By the same reasoning (for another example) the unit vector in the 2L direction,

denoted by ZL’ terminates at a point P with coordinates (0, 1, 0) in the lab

frame. Thus, Eq. (6.4a) in this case would read

S o
xg (Mg )y,
el = | Mgl
z (M, )

L.B.J | BL'31

From Eqs. (6.5a,b) and the fact [evident from Eqs. (6.4c,d)'] that

(Mg )yp (Mg )5

(Mg )pp (Mg )5

(Mg )33 (MBL)3EJ

(MBL)jk = (MLB)kJ’ it follows that

+ (Mglyy 2

yB=zB=0
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,‘-numww}\&uha RYYT RIP Y RT

t_‘s)

= (Mg )1 (M) 120 )43

>

z (6.6a)

L-rL.J

and

A ~

Y = (xg Xo +yp Yo+ 23 Zp). .. w0 & " "
S UBB BB B B o2 =0 = (Mg )5 %+ (M )22 4
y = .
X5 ]

+ (Mg )3p 25 = (M) oy (M 3)pp(M5) sl f ¥

(6.6b)

L_'N >

Arguments like those leading to Eqs. (6.5a,b) and (6.6a,b) applied to
all the unit vectors in both systems yield the following two vector-matrix

equations:
lugl = [Mg 10y ) (6.7a)

and its inverse form

[4,] = [41CUg] (6.7)

where [EL] and [EB] are "vectors of unit vectors" of the form

- e




SR

| 2) (6.7a)"

A

(ug] =

(6.7b)"

We now wish to obtain (1) a transformation between the lab frame (xL, Y,

zL) and a coordinate system to be called the "ground frame" (xo, Yos zo). ob-

tained from the basic (x, y, z) coordinate system by a translation such that

the origin of the ground frame is at the center of the scatterer; and (2) a

transformation between the ground frame and the body frame (xB, Yg: zB). To

accomplish this, we first note that Figures 6.3 and 6.4 contain diagrams which

are both the equivalent of those in Figure 6.2 except for changes in coordinate

names .

From Figures 6.3 and 6.4 and accompanying sets of equations (6.6a,b,c)

through (6.13a,b,c), by analogy with Eqs. (6.4(a,b) and (6.5a,b), we obtain

the following sets of vector-matrix transformation equations, analogous to

Eqs. (6.4a,b) and (6.5a,b):
[rg] = (M5o1Cr,]
[r] = M g1lry]
[ig] = [Mgo305,)

(6] = MglGg]
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(6.14a)

(6.14b)

(6.15a)

(6.15b)
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(a)

Figure 6~3. Transformations between ground

frame and body frame

6-9

Analogous to Fig. 6.2.a, X > Xy

YL+
2+

ep-»eb

Rotate around 2, axis through angle %

s0 Z, lies in (xo' -yo') plane:
1
xo' =x0cos¢»b+yosin¢b (6.8.a)

)

Yq =.x°sin¢b *¥ocosé, (6.8.b) r

zo' =z, (6.8.¢)

Analogous to Figure 6.2.b
and Egs. (6.1.a,b,c)

Rotate around y' axis through angle

8 so z' H zp




1
- Xg -xd'cos¢H +‘y0“sin¢H (6.10.2a)
‘s Y '-xd'sin¢H+ yo"cos¢H (6.10.b) f
Tl zg =2y (6.10.¢)

(c.2) =
z; xo" -xo' cosey, - zo' si ney, (6.9.a)
19 P
.2 Yo *¥g (6.9.b)r
o " zo" -xo' s'ineb+z0' cosey, (6.9.¢)
Vo0 Yo o o
= Analogous to Fig. (6.2.c)
and Eqs. (6.2.a,b,c)
(d)

Rotate around zd'axis through angle

by CCW looking in -2 direction.

Analogous to Fig. (6.2.d)
and Eqs. (6.3.a,b,c)

Figure 6-3. Transformations between ground frama

and body frame (cont'd.)
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(a) Z, Analogous to Figure 6.2.a
xL" xo xB - xL

n* yO .VB Y

y ZL* 20 ZB +zL

Gp* GB

%p™ g

(Note: 8 is along + z, direction)

®) 7! y P~tate around z axis through angle
~ x-", ¢B 50 il_]ies in (x2'-zz') plane
¢ Xy 3 XACO0SO, *YASiNG (6.'I'I.a)T
. zi lB . 2 0 g 70 8
3 ¥p' = Xgsing, +y,c0se, (6.11.b) §
3 22' =2, (6.11.¢)
Analogous to Fig. (6.2.b)
g and Eqs. (6.1.a,b,c)
'L‘;
3
|
Figure 6-4. Transformation between ground frame and lab frame ’
-




{e.1)
5
e
]
5 —
q
xz‘ -xz' cosea -zz' sineB (6.12.a)
Y3 ¥y (6.12.0)4
zz" -xz'sineB +zz'coseB (s'lz.ij

Analogous to Fig. (6.2.c)
and Eqs. (6.2.a,b,c)

(d)
7
4
KL
J°J
2'2' y ZL O ‘;

N,

Yi- y'z'

*

Rotate around yz' axis through angle
8g s0 zi‘llzB

Rotate around zé‘ axis through

angle dgs CCW looking in =

direction.
q
X -xz"cosoJ +yé'sinoJ (6.13.a)
y "Xy sin +y2“cos J (6.13.b) §
7 -zz“ (6.13.¢)
o

Analogous to Fig. (6.2.d)
and Eqs. (6.3.a,b,c)

Figure 6-4. Transformation between ground frame and lab frame (cont'd.)
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{r 1= M 1lr,] (6.16a)

[ryd = My 30r, ] (6.16b)
(o1 = I 05, (6.17a)
(] = [, 105, (6.17)

where

rod = Jyo | =] y-v

zoJ z -z ] (6.17¢)"

where Xs» Ygs 2o are the basic (x, y, z) coordinates of the scatterer

center,

™ A
X
-3
Y"1 (6.17d)
2
-+
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Mg,] =

r
(cos 8y cos °b cos ¢,

- sin °b sin ’H

(-cos 8, cos ¢y sin Oy

- sin ¢ cos ¢H)

(sin 8, cos ¢p)

e

pu—

(cos 8, COs ¢y, COS ¢

-sin ¢y sin ¢H)

(cos 8, sin ¢, cos o

+ cos ¢, sin ¢H)

(-sin 8, cos ¢H)

-

(cos 8y sin ¢, cos %

+ cos ¢, sin ¢H)

(~cos 8y sin ¢ sin oy

+ cos ¢, cos ¢H)

(sin 8y sin ¢b)

(-cos 8y cos ¢ sin ¢y

-sin ¢, cos ¢H)

(-cos 6, Sin ¢ sin ¢y

+ cos ¢ cos ¢H)

(sin 8y, sin ¢H)

6-12
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(-sin 8, cos ¢H)

(sin o, sin o)

(cos eb)

(6.15a)"

(sin 8, cos ¢)

(sin @, sin ¢,)

(cos eb)

(6.15b)"*




:
g
f
e
£
b
b
:
.
:

M

Lol =

r

(cos e-B cos ¢, cos ¢,

- sin ¢B sin ¢J)

(-cos 6_ cos ¢B sin 93

8

- sin ¢g COS ¢J)

(sin 8, cos ¢B)
e

(cos 9B cos os cos ¢,

- sin ¢B sin ¢J)

(cos 96 sin ¢B cos ¢,

+ cos ¢4 sin ¢J)

(-sin 8, cos ¢J)

b

(cos 8g sin 9g COS ¢,

+ cos 9 sin ¢J)

(-cos 8g sin ¢, sin ¢,

+ cos ¢, cos ¢;)

(sin 8g sin ¢B)

(-cos 84 COS ¢g sin ¢,

- sin ¢4 COS ¢J)

(-cos eB sin g sin ¢,

+ cos ¢, cos ¢J)

(sin 8, sin ¢J)

RSP SRR ——

q
(-sin 8y COS ¢J)

(sin 8g sin ¢J)

(cos 6p)

——

(6.17a)°

(sin 8g COS ¢B-7

(sin eB sin ¢B)

(cos 98)

-
(6.17)"




From the viewpoint of programming these calculations, we must distinguish
between the variables that are specified at the beginning of the program (“given"
variables) and those that are calculated from the given variables ("derived"
variables). Of those variables appearing in [MBo] or (MoBJ. 8y, and ¢, (the
angles specifying the orientation of the scattering body) are given, while ¢y
is derived. Of the variables appearing in [MLo] or [MoL]. 8, and 9g (direction
angles of E) are given, while ¢J is derived. Finally, of the variables in
(Mg 1 or [M 5], 6y» 0, and op are all derived.

To relate the matrixes [MBOJ (or [Mg]), and [MoL] (or [MLOJ), we form
the matrix equations [from Eqs. (6.7a,b), (6.15a,b) and (6.17a,b)]:

Cig] = [MyoICu,] = [Mpo My, 105, T = (M, 104, ] (6.18a)
or
(0,3 = [ J00,0 = M JDM 5100gT = DM 5 1005) (6.18b)

Either of the matrix equations

LYRRSLWILEY (6.19a)
{derived from Eq. (6.18a)], or
Mgl = [M IM] (6.19p)

[derived from Eq. (6.18b)] constitutes a set of nine algebraic equations (not all
{
ndependent) which contains the variables ep, ¢p, s By Gps 8g, dg» by and 4.
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A1l of the machinery for performing the coordinate transformations needed
to implement the scattering program is contained in the matrices [MBo] (or
[MoB]), [MLO] (or [MoL]). and the matrix equations (6.19a,b). Fortunately,

we only require limited knowledge of the variables contained in those

equations. First, we must solve (in terms of known variables) for the variable

¢, contained in [MLo] or [MoL], since the other variables in those matrices,
eB and ¢B’ are known. This is the purpose of the development to follow.

The Barber scattering program is constructed in such a way that the
scattered wave is evaluated in the (xL, - zL) plane., There are two plane-wave
scattering processes to be considered (see Figure 6.5). We will call these
processes A and G.

Process G is direct scattering from the body to the antenna, The wave
propagation vector, for this process, denoted by EsA and totally independent
of Ei’ is along the vector r . (Figure 6.5a) from the center of the scatterer
to the antenna. |

Process G is the scattering from the body to a point G on the ground
surface followed by ground reflection toward the antenna in accordance with
the law of reflection. The wave vector for this process, denoted by EsG and
again independent of Ei’ is parallel to the vector rsG shown in Figure 6.5a.

For the computation of the scattered fields using the Barber scattering
program, both rsA and rsg must lie in the (xL - zL) plane. Hence, these
vectors must be perpendicular to the YL coordinate direction. The conditions

to be met are [with the aid of the second equation in the matrix relationship
(6.17b)]

. QL = (x, - xg)[-cos 8, cos ¢, sin(¢J)A - sin ¢4 cos(9;),]




e i L A e dia2 0

T ‘-W‘u‘ T

e T e A A

+ (yp - yg)l-cos 6, sin ¢, sin(e;)y + cos ¢, cos (4;),]

+ (zy - 25)[sin 8 sin(¢J)AJ =0 (6.21a)
g gL = (xg - xg)[-cos @, cos ¢y sin(e;)g - sin 45 cos(oy)q]

+ (yG - ys)[-cos 8g s1n o5 s'ln(¢J)G + cos ¢g cos(¢J)G]

+ (zG - zs)[s1n 6g sin(¢J)G] =0 (6.21b)
where (oJ)A and (¢J)G are values of ¢J for processes A and G, respectively,
and where, from Eqs. (€ 20e,g,f)

-~ Xy 25t X 2
6T T
Yaist s %
y B e ———————
ZG =0
Ton = X(xg = x5) + Ylyp - yg) + Zzp - 2g)
Teg = Xlxg - xg) + Ylyg - ¥g) + 2z - )
-~ Solution of Eq. (6.21a) for cos(¢a)A and sin(¢J)A or that of Eq. (6.21b)
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B for cos(%)A and sin(%)G (exactly the same form in both cases) yields
P
! ~ Pea COS 8, c0S(d, = $,c) - (2, - 2¢) sin 6
, SA 8 8 AS A S [
. cos(%)A = -
; [oga cos 8, cos(ag = dpg) = (24 - 2g) sin eﬁli + Logp sinley - 4p6)1°
.
- (6.22a)
-pea Sin(¢, = dpc)
sin(¢J)A - SA B AS = >
% V/[pSA cos 6, cos(¢3 - ¢AS) - (zA - zs) sin 68] + [psA sin(¢B - ¢AS)]
3
{ (6.22b)
E
]
Psg €05 04 cos(¢B - ¢GS) +2g sin 8g
cos(¢J)G = =
( V/EDSG cos 85 cos(¢8 - ¢GS) *+zg sin 98]2 + [psG sin(cpB - ¢GS)]
f (6.22¢)
! -0en Sin(0g - dpc)
- sin(¢J)G = S6 B__"GS .
- J[osg <05 85 cosleg - ags) + 25 sin 85T + [ogg sin(og - 4gs)]
b
i\ ;
R (6.22d) |
A ;
'_1 where
‘; Pep * /(XA - XS)Z + (yA - .Vs)z

-1 ,Y2 " Ys
é = tan ( —— )
SA XA - XS




%56 ‘J(XG - xs)z + (.YG - .VS)E

- Y - ¥
stan](—-G-_-—S—)

Psg Xg - Xg

R N i

X
G z, + zS
Ya 25 * ¥s 2p
y B c——————tre—
G zp + zs

At this point we will invoke three of the equations in the matrix equation

system (6.19a), as follows: l
((Mgo Mg DDy = Mg 1y (6.23)

(3=3,k=1)
cos ¢;(-[cos 6, sin 8, - sin 8, cos 8, cos(e), - ¢,)])

+ sin ¢5(sin 6, sin(ey, - ¢,)) = sin 6  cos ¢ (6.23a)'

p

(j'3sk’2) ;
cos ¢J(sin 8, sin(g - ¢B)

+ sin ¢J(-[s1n 8y, cos e8 cos(¢b - ¢B) - cos 8, sin 98])

6-19
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= sin ep sin ¢p (6.23d)

(3 =3, k=3)

sin 8, sin Bg cos(¢b - ¢B) + cos 6, cos 8g = cos ep (6.23¢c)’

Note that the left hand side of Eq. (6.23c)' consists entirely of given
(and therefore known) variables. This equation can be used to evaluate ep,
thus from Eq. (6.23c)',

. -1
ep cos '[sin 8y, sin 8g cos(¢b - ¢G) + cos 8, cos BB] (6.24)

From Eqs. (6.23a)' or (6.23b)' we can solve for (¢p)A and (¢p)G (the
azimuthal angle of the body axis in the lab frame for scattering processes
A and G, respectively) in terms of known variables, as follows (if ep #0;

otherwise (¢p)A and (¢p)G are arbitrary):

(¢p)A = cos”! ( EWﬁLEE {-cos (¢;), [cos g, sin g,
- sin 8, cos 8, cos (4, - ¢g)] + sin (9;)5(sin 8y sin (o - ¢5))}]
= (equivalently) sin'] ( ET#LEE {cos (¢J)A (sin 8, sin (¢, - ¢B))
+

sin (¢J)A [cos 8y sin 8g - sin 8y, cos 64 cos (¢b - ¢6)]})
(6.25a)

where cos (¢J)A and sin (¢J)A are given by Egqs. (6.22a) and (6.22b), respectively,
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e

and sin ep is obtained from Eq. (6.23c)°'.

= cos™) ( —1 (-
(¢p)G cos ' ( <Th 9p {-cos (¢J)G [cos 8 sin eB

sin 8, cos 8, cos (¢ - ¢B)]

+

sin (¢5)g (sin 8y sin (¢, - ¢5)})

(equivalently) sin”! ( ;Tg-gs {cos (¢J)G (sin 8, sin (¢, - ¢B))

+

sin (¢J)G [cos 8, sin 8g - sin 6y, cos 6, cos (¢ - ¢B)]})
(6.25b)

where cos (¢J)G and sin (¢J)G are given by Eqs. (6.22c) and (6.22d), respectively,

and sin ep is obtainable from Eq. (6.23c)'.

We must now obtain a transformation between the ground-frame coordinates
of the electric field plane-wave spectrum incident on the scatterer (i.e., the
field spectrum directly from the cable superposed on the ground-reflected
field spectrum from the cable. Both of these are expressed in ground-frame
coordinates (xo, Yo zo)and the 1ab frame coordinates of these same field
spectra (i.e., the X and A components, since the 7 component must be zero
for a plane-wave propagating in the z direction). To this end, we write,

where Ei is the incident field (spectrum) vector

~

= 5 E CF I~ = ~(L) Ten
B =k By oy 300 = )
i F 4 SE +3F wrplO)gTe
XEy +y By + 2By = (BT Ty, (6.26)
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where

(£ ] E ]
0 ixL ixL
-.L -~ ~
E = E = E

£ 0

& uL_ L -
EixL =X component of Ei

EiyL =Y component of Ei

™

ix

s
x

(0
(E§7 - iy

me: Mmoo
o e
<
™

_—
~N
il

iz

= x component of Ei
-

y component of E,
|

= 2 component of E,
g |

and where [EL] and [go] are defined in Eqs. (6.7a)' and (6.17d)' respectively.

From Eqs. (6.26) and (6.18a,b),

8017, 2053 = (BT

(6.27)

which implies [using the fact that [MoL]T = [MLO] evident from the definitions

below Eq. (6.17b)] after taking the transpose of both sides of Eq. (6.26), that

TE{H)1 = Oy TTEE = O JE )

in longhand notation Eq. (6.28) takes the form

s . R e

6-22
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- o o -
EixL (cos J“ cus ém cus qJ sin ¢, sin ,J) E_ix
+ (cos eﬁ sin ¢, cos ¢y + cos ¢g sin @d) Eiy (6.22:)!
- (sin 0, cos ¢J) Eiz (¢.28a)"’
s
:
E EiyL = ~(cos 0(5 cos ¢, sin ¢, + sin ¢u cos ¢J) Eix
k.
: - (cos 04 Sin ¢, sin ¢y - cos b COS ¢J) Eiy
g
a + (sin 0, sin ¢J) EiZ (6.28b)"
|
—~ E. =0 = (si E ; i E. . F
EiZL 0 = (sin 0, cos ¢8) E,x * (sin 0, sin ¢B) Eiy + (cos 96) £y
, (6.28¢)"
R
where ¢ = (¢J)A and (¢J)G for A and G scattering processes respectively.
}Q_ Since we know from the Maxwell equation Vv - E = 0 that
E.o=-A e B +p E ]
iz B, "x Tix Ty Tiy
_ N . b ~ . .
= - ol 0 [sin 98.(Eix cos ¢, + Eiy sin ¢G)] (6.29)

it follows that Eq. (6.28¢c)' is valid, since Eqs. (6.29) and (G.28c)' are
identical. It also follows from Eqs. (6.78a,b,c)', with a little manipulation,

that

LR YR S oy FYSNIPAYNGS) vy P WA L SIEAIEY ey e st P O




. 1 .
Eqx {333—3; [cos ¢g Cos ¢; - cos 8g sin ¢, sin ¢J]}

+ Eiy {cos % [sin $g COS 6y + cOS B, COS 0 sin ¢J]} (6.30a)

. T
if 8q ?‘E .

me

iy, E;, - EB?'EE [cos 6 sin ¢; + cos 8, sin ¢ cos ¢J]}

Eiy {- —— cos e (sin % sin 9, - cos g cos ¢g COS ¢J]} (6.30b)

+

: m
lfer-2-~

If 8, =-%, then Eq. (6.28c) implies that (where subscripts R and I indicate real

and imaginary parts respectively)

. -tan ¢, (6.31)

From Eqs. (6.28a,b)' and (6.31), if 98 =~§ , we can infer the following

relationships for real and imaginary parts of Eix and Eiy
L

L

LETI
ix )R * i [ s 1 - Eygp cO8 0 (6.32a)
L I 8 I

(E

if ¢g # 0, m, 98’%~
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- - cos ¢, -
- (EiyL)II! * B [ Sme, o T+ Epsing (6.32b)
I I

if¢8f0,n,68=%. \

' - - sin ¢, -
(Bix Jr = Biyr L oowg, 1~ Bizr €05 9 (6.32¢)
» I 1 I
1 ' . T 3n . m
! otz 7% 7"
1
1 - - cos ¢ - .
= (EiyL)? = EileR (- 'CT)-S_‘»_B 1+ EiZR sin ¢J (6.32d)
3 1

T 3n =T
Hogfg-7 %7

A further step is required to construct the inputs to the Barber scattering

ﬁ
! program.
The amplitude Ei and the angle oi, the polarization angle of the incident
_ field in the lab frame, are required as inputs to the scattering program. The
N amplitude, independent of polarization, is easily obtained without any coordinate
transformations, i.e. [with the aid of Egs. (6.29 and (6.32)],
N Y = |2 = 2
S I A [N L N LR
. - = 2 2 2 YA 2 . 2
JflEixl (1 + tan 8g cOs ¢B) + 'Eiyl (1 + tan 8 sin ¢B) cee
= 2 L
.+ 2Re(E1x Eiy cos ¢g sin %g tan eB)} (if 95 ts )

LRy s ey RIS T | T L BT g e v bas ca e E L v age . e ¢ W WO RO R N WA R WY - T



= (2
1€ | "
ol i el R #8237 057 0ur
Jsin ¢ _
E" Byt 2 3
= _m T T
cos” ¢g
3
i The polarization angle 55 assuming that the phase angles of Eix and
3 - L
Eiy are the same (linear polarization) is given by
L
* [Ey, |
- =1
oy = tan"! ( —E-) (6.34)
; lEixLl

' where £, and Eiy are given by Egs. (6.28a,b,c)' or alternatively by Eqs.
L

{ ~ %

{6.30a,b) if e8 # m/2 or by Eqs. (6.32a,b) if eB = 7/2, dg # 0,7 or by £gs.
(6.32c,d) if 8 = n/2, dg # /2, 3n/2.

If the phase angles of EixL and EiyL are not the same, that fact would
imply that the wave incident on the scatterer is elliptically polarized. We
could exclude that possibility by assuming that, if a particular source should
generate a superposition of elliptically polarized plane waves, then for each
such wave the rate of rotation of the plane of polarization is sufficiently
slow that, throughout the scatterer region, where the incident wave can have
an influence on the scattered wave, the rotation of the plane of polarization
can be considered approximately constant.

Once the fields from the source have been found, we can determine to
what extent the relative phase angles between x, y and z components constitute

~ a problem. Since free space is a reciprocal medium, it would seem that it
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should not be a problem at all.

should be linearly polarized.

441---II-llI-lll--.-..-Il..l.................llll.ll.........i....ll'll.liiil"

Any plane waves propagating from the slots

To ascertain that this is indeed the case, we can examine the expressions

for x, y and z components of fields in Eqs. (4.46a,b), (4.47c,d,e,f) or the

specialized forms of these equations (4.48b,c,d,e) or (4.49a,b,c,d,e,f).

To obtain the field components we must add the quantities with subscript +

to those with subscript - [i.e., Eqs. (4.47c) + (4.47e), (4.47d) + (4,47?),

(4.48b) + (4.48c), (4.48d) + (4.48e)].

summations are as follows [where we note that SE") = (Sin))*]:

Eqs. (4.47c) and (4.47e):

X

y

The results of the first set of these

Z

Factors

Factors

Factors

Factors

in féﬂ) term

in fﬁg) term

in ﬁiﬂ) term

in ﬁgﬂ) term

+lg, Irefs(M ¢*10)
+lg, 1 ls{™ ¢ 107
nfA, s{™ o h104

-Re[A, s{™ o410,

(A1l real numbers)

+1a, ) nfs(™ ¢*10
Ha, Res{™ & 1)
‘Re[AySS,") S0,
mia, s{V ¢ %107

(A11 real numbers)

-By Re[Si") ej¢]°]

sy Re[Si") ej¢]°]
+18,18, Refs{™ ej¢‘°]
+18,18, Rels{™ 240

(A11 real numbers)

Eqs. (4.47d) and (4.47f):

X

y

b4

Factors

Factors

Factors

Factors

in ﬁiﬂ) term

in ﬁiﬂ) term

in 'Eif}) term

in fiﬂ) term

+[8, [Re[si™ e 10
+{g, | n(s{" 10
-Im[A, Sin) eJ¢]°]

Re[Ax Sin) ej¢1°]

(A11 real numbers)

+[8, | In(s{™ o210
+]8,Rels{™ ej¢]°]
Re[A, 5™ 10,

-Infa, s( ej"lo]

(A11 real numbers)

i¢
-8, Re[Sﬁn) e ]0]
310

By Re[Sin) e ]

j¢
Hlg,l8, Re[s;") & 1]

e
3g,l8, Rels{" & 10

(A11 real numbers)




From the chart above, it is clear that all three components, x, y, and 2z,
- have the same phase. Each component associated with one of the slot fields,

;.g., Hﬁﬂ) or Eﬁﬂ), has a complex factor common to all three components and
another complex factor that is different for the three components. It is the
latter set of factors that the cﬁZEﬁ refers to, and Qhen the plus and minus
terms are added, the sums of those factors are all real numbers. Hence, the
plane-wave fields from the slots are all plane-polarized. The ground-reflection
will not change this, since the ground is also a reciprocal medium.

The same arguments apply to the summations [(4.48b) + (4.48¢c)],
[(4.48d) + (4.48e)], [(4.49¢c) + (4.49d)] and [(4.49e) + (4.49f)], since these
are only special cases of those summations discussed above.

Note that the corresponding factors in the field components with subscript o

[as evidenced by Eqs. (4.47a,b), (4.48a) and (4.49a,b)] are all real numbers. 4

, We will now summarize the steps required to implement the calculations ,
i -~ described in this section on the computer.
A. Feed in the variables Xas Yar» Zp0 Xgs Y5 Zgo 98’ ¢B’ eb. ®p and
(Eix’ Eiy’ Eiz)’ the components of the spectral field of the plane wave incident
~ on the scatterer, from the main program to a subprogram to be called Subroutine
= | BIS ("Barber Input Subroutine").
o B. Compute x; and y, from Egs. (6.20e,f) (repeated and renumbered for

convenience):

=)(AZS"')(SZA

j:ﬁ! g Z, * Zg (6.35a)
Yp 2s * ¥g 2
Yg ¢ Tz vzg (6.35b)
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C. Using Xg and e from Step B, compute the following quantities [see i
the definitions below Eq. (6.22d)]:

PsA '\ﬂxA - xs)z + (.YA - .Vs)2 (6.36a)
- Ya- Y

osp = tan x2 - x: ) (6.36b)

Pse "/(XG - xs)z + (.YG - .Ys)z (6.36¢)

Yg = Ys )

-1
¢sg = tan * ( Xg - % (6.36d)

D. Using the results of A, B, and C, compute cos (¢J)A and sin (°J)A from

) G G
Eqs. (6.22a,b,c,d) (repeated and renumbered):

Pgp COS 85 COS (¢B - ¢AS) - (zA - zs) sin 8g

cos (¢,), =
' A [oea €Os 68, cos (¢, = dnc) - (25 - 2¢) sin B ]2 + [pea Sin (¢, - ¢ )52
SA 8 8 AS A S 8 SA 8 AS

(6.37a)

~psa 1 (45 - )

sin (¢J)A =

V,[°SA cos 8, cos (dg - ¢pq) = (2 - Zg) sin 6312 + [ogp sin (¢g - ¢AS)]2

(6.37b)
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Pgg COS 68 cos (¢g - °GS) + zg sin 8g

cos (¢J)G =

V,[psG cos 8g cos (¢ - °GS) + zg sin eB]T:[psG sin (¢B - 065)32

(6.37¢)

“psg STn (9 - 9gs)

sin (4{,)G =

logg cos 8, cos (¢B - dgs) * 2zg sin 6312 + [pgg sin (og - °GS)]2
(6.37d)

Pga ‘J(XA - Xs)2 + (.YA - .Ys)z

YA~ s )

-1
dep = tan ' (
SA XA - XS

E. From the results of A, B, C, and D, compute (¢p)A from Eqs. (6.25a,b)
G

repeated and renumbered):

(¢p)A = cos”! ( ET#LEE {-cos (¢J)A[cos Bp sin 6g - sin g, cos 8, cos (¢ - ¢B)]

+ sin (¢J)A(sin 8, sin (¢, - ¢B))})

1

= (equivalently) sin ' ( E?ﬁLEE {cos (¢y)p(sin 6, sin (o - )

+ sin (oJ)A(cos 8y, sin 8g = sin g, cos 8g cos (¢b - ¢B)]}) (6.38a)
6-30
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T

where cos (¢J)A and sin (¢J)A are given by Eqs. (6.22a) and (6.22b) respectively,

and sin ep is obtainable from Eq. (6.23c)".

(¢p)G = cos™ ! ( 3?3}3; {-cos (¢J)G[cos 8 sin 8g - sin 8, cos 8, cos (o - 9g)]
+ sin (95)g (sin 8 sin (¢, - 6))})
= (equivalently) sin”! ( ;;7}12; {cos (¢J)G(sin 8, sin (¢ - ¢B))

+ sin (¢J)G[cos 8 sin 8g - sin 8, cos 8g cos (¢b - ¢B)]}) (6.38b)

where cos (¢J)G and sin (q;J)G are given by Eqs. (6.22c) and (6.22d) respectively,
and sin ep is obtainable from Eq. (6.23c)'.
F. Compute [from Eq. (6.33), repeated and renumbered] the amplitude of

the plane-wave incident on the scatterer:

= = 2.1 12418 12 .
£y = JIEl” ¢ 1By 1T+ Ey (6.39)

G. Compute [from Eq. (6.34, repeated and renumbered] the phase of the
incident wave for both scattering process (antenna-directed and ground-

directed):

. .
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-1
oM+ (8) o rean” .l_i'ﬂ_ 170A).(6) (6.40)
EixLl

where ihe arguments are chosen in accordance with the "lab system" defined

for each scattering process.

H. Transfer the results 8, (¢p)A, (¢p)G. Ei’ (¢5) and (¢1.)G into
the Barber scattering program. '




. 7. THE BARBER SCATTERING PROGRAM ]

)

It was decided early in this project to use, if possible, a scattering

g program that was already developed as opposed to generating a new one. This
seemed sensible in view of the time limitations of this project and the ex-
tensive research that has been done on electromagnetic scattering during the
past 30 years. It might have required virtually ail the project time and
effort available to develop a suitable computer program to treat electro-
magnetic scattering from an object designed to simulate a human frame target.
If such a program had already been developed and was available, it would seem
that we should use it.

. Hence, early in the project an extensive literature search was done on

electromagnetic scattering at radio frequencies. The bibliography resulting

5 from that search is included in the list of references at the end of this

| report?'1 through D-35

In the process of conducting the lTiterature search, it was found that
virtually all the scattering theory done by previous workers had severe limi-
tations when one considers scattering from a live human body. The theory can
only be done rigorously for uniform or layered spheres, uniform or layered
infinite circular cylinders (not finite cylinders), and with considerably more

. difficulty for uniform or layered ellipsoids or uniform or layered cylinders

with elliptical cross-section. When scatterer dimensions are very small com-
end

pared with wavelength (or more precisely, when = << 1, where d is the largest

scatterer dimension and X is the wavelength in the scatterer material) whatever

series of special functions are to be used (e.g., spherical or cylindrical

vector wave functions in the cases of spheres and cylinders, r*espect'ively)n'1

— require fewer terms for a given level of accuracy. In implementing scattering
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problems on a computer, even for these simple tractable shapes, it 1s highly
desirable that the scatterers be (a) of uniform constitutive parameters, as
opposed to being layered, which although theoretically tractable always in-
volves more computer time; (b) either perfectly conducting (complex dielectric
constant a pure imaginary) or perfectly dielectric (complex dielectric constant
purely real), also resulting in a smaller expenditure of computing time; (c)
very small or very large dimension compared with wavelength, allowing the use
of fewer terms in the appropriate series in the former case (as remarked above)
or the use of physical optics approximations in the latter case. Either of
these two extremes simplifies the computations and thereby saves computer time.
Unfortunately, none of the simplifications above are necessarily applicable
to human frame targets within the frequency range of ‘nterest. Wavelength in
free space (Ao) for our frequency range of 50 to 500MHz ranges from 0.6 to 6

meters. Considering 2 meters as d, the largest dimension of a human frame
2nd

target, the parameter ( T ) ranges from about 2 at 50MHz to about 20 at
500Miz. If we consider 24 , where ) is the wavelength in the medium of which

the scatterer is composed, we must correct these numbers by a multiplicative

factor of

€ +-——’ , where & = —=
€cs being the permittivity of the scatterer, and Og is the conductivity of
the scatterer. Suppose we use values Ecs = 20 and gg = 1 mho/meter, which
were close to the values used in our computer program, based on Reference
D-34.
The correction factor would range from about 5 at 500MHz to about 20 at

. 2nd

50MHz. Thus the parameter 5 referred to the scatterer material rather

. .
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than free space, is somewhere between roughly 40 at 50MHz and roughly 100 at

‘ - 500MHz. These numbers are well above unity but not necessarily large enough §
%. to allow the use of physical optics approximations. They are certainly not

. small enough to allow the use of highly truncated series of harmonic functions

| and, in fact, require large numbers of terms for convergence of these series.

Also, human targets cannot be modelled as perfect conductors or perfect di-

electrics at these frequencies, which again brings the problem into the domain

: of more computer-intensive scattering problems. A sphere or circular cylinder

is an extremely crude model of a human body. An ellipsoid would be a much

- IR

better model, but again it would be desirable from a computer-time viewpoint

to have some symmetry in the scatterer; nence, a good compromise between

RS AR M

analytical simplicity and realism is a spheroid, particularly a prolate spheroid.
| As a part of the literature search, the bioengineering literature on

' absorption and scattering of electromagnetic waves by biological objects was

- dD-l through D-35

peruse Bioengineers are primarily interested in absorption

rather than scattering, but the boundary value problem they must attack to
determine the absorption also contains the mathematical machinery to determine
the scatterfng from the body. Hence, a particular piece of work done by Pro-
fessor Peter Barber of the Biocengineering Department at the University of Utah
in Salt Lake City appeared to be highly applicable to the problem of interest
on this project?-?
Barber had authored or co-authored a number of papers on this work and
had developed a very extensive computer program to implement the analytical
so1utions?’13’0'17’D']9’D'22’D°24’D'29’0'30’0'32'0”34 The program had been

used on a number of problems of interest to bioengineers over a period of about

five years and had been thoroughly "debugged." It had been used by others on

different computer facilities and had produced reliable results. It seemed
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that the best procedure for us would be to ask Barber for his program cards
and adapt the program to Northeastern's VAX. All of this was done, as indicated
in the quarterly status reports on this project, and Professor Barber's scat-
tering program was adapted to the VAX and implemented as a subroutine in our
overall program. It is called "Subroutine BARBER."

The details of the theory behind this scattering program are given in
Barber's papers, particularly References D-13, D-17, D-19, D-22, D-29.

It is based on an integral equation technique called the "Extended Boundary

Condition Method" (EBCM).
0-4

Following a development due to Waterman, = the incident and scattered
elactric fields at position r= (r, 8, ¢) are expanded in a series of spherical

vector wave functions as follows (using some of Barber's notation):

€ = T ola, Ak + v, M(ko)) (7.1a)

£(r) - Loy, W(kr) + g, Pkp)] (7.15)

where superscripts i and s refer to "incident" and "reflected", respectively,
where ﬁl. ﬁl, ﬂi, Ni are vector wave functions, superscripts 1 and 3 referring
to particular classifications of these wave functions (e.g., 3 refers to radi-
ation fields, i.e., Hankel function expansions), k being the propagation

constant in the ambient medium, v being a combined index incorporating spheri-

" cal harmonic indices, and Dv being a normalization constant. The constants 3

and bv are assumed known for a specified incident wave. The task of solving
for the scattered wave field is that of evaluating the unknown constants fv

and 9,-
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The method is valid for any homogeneous, linear, isotropic scatterer,
and has also been extended to include layered scatterers each of whose layers
is homogeneous, linear and isotropic. The technique lends itself most readily
to scattering from spherical objects but can be used to treat objects of
arbitrary shape.

The scattering object is completely surrounded by a sphere whose diameter
is the largest dimension of the object itself. If the fields on the surface
of the sphere are known, then the Kirchhoff-Huyghens integral equation [see
Appendix I, Egs. (I.3a,b) or (I.6a,b)] can be used to determine the fields
outside the sphere. To relate the fields on that sphere (a knowledge of which
is tantamount to solution of the scattering problem) to the boundary conditions
on the bounding surface of the nonspherical scattering object itself, an
analytic continuation process is used. Through the Kirchhoff-Huyghens integral
equation, the expansions in Egqs. (7.1a,b) and the application of the boundary
conditions on the scatterer's surface, a set of matrix equations are developed
from which the coefficients fv and 9y and hence the scattered fields, may be
determined.

Further details on the basic theory behind the EBCM is explained quite
thoroughly in Waterman's 1971 paper?~4 in which he also references a great deal
of previous work on this and related techniques for solving scattering problems.
Barber's principle contribution was to apply that theory to the development of
computer programs that can handle a wide range of difficult scattering problems
and the application of the theory, via those programs, to problems involving
biological scatterers. The particular scatterer to which we have applied his
program is a homogeneous, linear, isotropic prolate spheroid designed to simu-
late a human being.

It should be mentioned that another analytical method of treating scattering
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from a human frame target, together with a computer program to implement the
method, was developed by Barber and one of his Ph.D. students, Mark Hagmann.
This work is presented in Hagmann's Ph.D. thesis, Reference D-31 on our
reference list,

Professor Barber gave the writer a copy of this dissertation for possible
use on the project. The method treats a human body as an electromagnetic scat-

terer in a much more accurate way than does the theory that we actually used.

Head, torso and limbs are each modelled and scattering processes from all of
these parts and interactions between them are considered. The unfortunate
aspect of this work from our point of view is that it is an almost completely
numerical technique and is much more computer-intensive than the method we have
actually used. An attempt to use this technique would probably have exhausted
our computation resources before we could have obtained any significant results.
; For this reason, we decided upon the simpler, more analytical method, wherein
~ the "human" scatterer is modelled in a somewhat crude manner, but the amount

of computer time required to determine a point is large but still reasonable.
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8. SCATTERED FIELDS-COORDINATE TRANSFORMATION
AT OUTPUT OF SCATTERING PROCESS

The scattered field, as produced by the Barber scattering program, is
measured along the (xL - yL) plane in the lab frame. This is illustrated
in Figure 8.1. The scattering angle 85, is the polar angle of ES’ the wave
propagation vector for the scattered wave, measured in the lab frame. (Note
again that 8s is entirely unrelated to Ei).

The Barber scattering program yields as its output the "vertically
polarized” and "horizontally polarized" components of the plane-wave field
scattered in the 8g direction. The former, denoted by ESV' is the component
normal to the (xL - zL) plane, and the latter, denoted by ESH’ is the compo-
nent parallel to the (xL - yL) plane. From ESV and ESH’ we can determine the
lab frame components of the scattered field. We must then find the ground
frame components of the field. The procedure for accomplishing this will be
described below.

From Eqs. (6.26) and (6.18a,b) applied to ES in lieu of Ei’

(ELONTG,] = CESH 1M 20, ] (8.1)
where
T s ) Fsx,
;SR N B 5 N
Es2 ESzL

Taking the transpose of both sides of Eq. (8.1) and noting again that
TS
[MoL] [MLO], we obtain

8-}
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Figure 8-1., Scattered field
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(€401 = (w20t (8.2)

—~
In longhand [i;om the matrix definitions (6.17a,b)']
, ESx = (cos 85 COS ¢g COS ¢ - sin 8g sin ¢J) ESxL
& ~
- (cos 6, cos ¢ sin ¢, + sin ¢, cos 6,) ESyL + (sin 65 cos ¢p) ESzL
(8.2a)'
ESy = (cos 8g sin ¢g COS ¢ *+ cos ¢ sin ¢J) ESxL
| - (cos 8y STn 65 sin ¢; - cos ¢4 cos ¢5) ESyL + (sin 8 sin ¢B) ESzL
| —_
! (8.2b)"
’—‘A.\ = - : - . . It g
o Eg, = -(sin 85 cos ¢,) ESxL + (sin 85 sin ¢,) ESyL + (cos 8g) ESzL
. | (8.2c)"
o The angle 6g (see Figure 8.1) is the polar angle of the vector 8. as
B ->
B . measured in the lab frame. It is evident from Figure (8.1) that
ES,YL = ESV (8.3b)
8‘3 +
- e o . e ¥
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and hence, from Eqs. (8.2a,b,c)' and (8.3a,b,c)

(A)

. (A) '
! Egs) = [(cos 85 cos ¢ cos (03)p-sin ¢ sin (9;),) cos egg)

| e

A
- (sin 8 cos ¢B) sin eéLg] Ez ;

(A)
- -[cos 65 cos ¢g s1n(¢J)A + sin ¢g cos (¢J A]E(G) (8.4a)
G G
(A) (A)
T Egg) = [(cos 8y sin 6 €OS (¢J)A + €0 ¢4 sin (¢J)A) cos eéf)
,, G 6
>
3 (A)  (A)
~ - (sin 6, sin ¢,) sin e(G)] E(G)
\ B 8 !
! (A) |
- [cos B sin 0g sin (¢J)A cos ¢, €OS (¢J A] E(G) (8.4b)
. ] 6
R
y (A) (A) (A) _(A)
-; Eég) = [-(sin 8g €Os (¢J)é) cos e( ). (cos eB) sin egG)] E(G)
¥
'
- (A)
: + [s1n 64 sin (9,051 E(G) (8.4¢)
G
]
where subscripts and superscripts (A) and (G) in Eq. (8.4a,b,c) correspond to
A and G scattering processes, respectively, and where cos (¢J)A, sin (¢J)A,
e
8-4




cos (°J)G and sin (¢J)G are obtained from Eqs. (6.22a,b,c and d) respectively. |

Confining attention in what follows to the A scattering process, it remains
A . .
to evaluate cos egL) and sin egf). Since ESA (parallel to ISA) is in the
(xL - zL) plane, the lab-frame azimuthal angle ogL = 0 orm. It follows from

the transformation between spherical and rectangular coordinates that (since

the antenna lives in the X = zL) plane)

(A) _ ZA
cos QSL -;:-s-; (8.5a)
o) L Il
sin g’ Fop (8.5b)

where

Tsp * J(XA - xs)z + (.VA - .Ys)z + (ZA - 25)2

and where X ar YA 3 2Te the lab-frame coordinates of the antenna. (Noting

that the lab frame has its origin at the scatterer center, it follows that

X1g =Yg = s = 0. Also, since the antenna is in the (xL - ZL) plane, we
know that Yia ® 0.)

From Eq. (6.16a) applied at the antenna position
A S [cos 85 COS ¢g COS (q>J)A - sin ¢g sin (¢J)A](xA - xs)

+ [cos 65 sin ¢g cos (65)y + cos 65 sin (65),yy - yg)

- [sin 8g cos (°J)A](zA - zs) (8.6a)




e Tl

ik o - ot KA L

Yp = -[cos 8, cos o5 sin (o)), + sin ¢ cos (07)4d(x5 - xg)
- [cos 85 sin ¢, sin (¢)), - cos ¢g cos (0;),](ya - ¥g)
+ [sin 85 sin (o)) )zy - 2zg) = 0 (8.6b)

Z 5 = (sin 85 cos ¢g)(xy - xg) + (sin 65 sin o5)(yy - y5)

+ (cos 68)(22 - zg) (8.6¢)

We will now summarize the procedures required to transform the output of
the Barber scattering program into the basic (x, y, z) coordinate system.

(A) The complex field components Egﬁ) and Egc) are extracted from the
output of the Barber program. These are respectively the "horizontally" and
"vertically" polarized scattered fields in the direction of the antenna in
response to the incident plane-wave with propagation vector koai. These field
components are fed from the Barber program into a subprogram which we call
Subroutine BOS ("Barber Qutput Subprogram”). The variables Xps Yas Zps Xgo

Yg» Zgs g and 96 are read into the BOS from the main program

(B) The following computations are made [introduced below Eq. (6.22d)]:

PsA = J(XA - "s)2 +{yy - ys)2 (8.7a)
A Yy
op = tan”! (B3 (8.7b)

A
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Fsp = ‘kxA - xs)2 + (yy - ys)é‘; (zy - zsf? (8.7¢)

(C) Using the results of (B), cos (¢J)A and sin (¢J)A are computed from

Eqs. (6.22a,b) (repeated and renumbered below for convenience):

Pgp €OS 84 COS (¢B - ¢AS) - (zA - zS) sin 8,

cos (64), =
A [ogy €0s 8, cos (9, - dpc) - (Zy - 2z¢) sin 8,1%+ [ocy sin (0, - 0pc) 12
PsA 8 B8~ PAS A~ “%s 8 PsA 8~ %as

(8.8a)

~PsA sin (¢B - ¢AS)

sin (¢J)A=

tpSA cos 98 cos (¢B - ¢AS) - (ZA - Zs) sin 9812"' [DSA sin (¢3 - ¢AS)]2

(8.8b)
(D) Using the results of (B) and (C), X a0 YA and 2, are computed from
Eqs. (8.6a,b,c) (repeated and renumbered below). Note that Eq. (8.6b) is not
needed in the computation, since YA is known to be zero.
Xa = fcos 8g COS ¢ COS (¢J)A - sin og sin (¢J)A](xA - xs)

+ [cos 0, sin ¢ cos (5)y + cos o5 sin (63),](yp - ¥s)

- [sin 85 cos (er)A](zA - zs) (8.9a)

8-7
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YA " -[cos Bg COS ¢ sin (¢J)A + sin ¢ cos (¢J)A](xA - xs)

- [cos 85 sin g sin (05), - cos g cos (67)43(y, - ¥g)

+ [sin 8g sin (¢J)A](zA - zs) =0 (8.9b)
2, " (sin 8g cos ¢B)(xA - xg) + (sin 8g sin ¢B)(YA - ¥g)

+ (cos 68)(2A - zS) (8.9c)

(E) From the results of (A), (B), (C), and (D), cos egt) and sin egf)
are computed from Eqs. (8.5a,b) (repeated and renumbered here):

(A) _ %A

cos © = —== (8.10a)
SL rSA
A) . al

sin olA) = (8.10b)
SL rSA

(F) From the results of (A), (8), (C), (D) and (E), compute Egﬁ), Egﬁ)

=(A)
and ES

2 from Egs. (8.4a,b,c) (repeated and renumbered here):

Egi) = [(cos 6, cos ¢g o5 (95)y - sin ¢4 sin (¢;),) cos egﬁ)
- (sin 8, cos ¢5) sin egf)] Egﬁ)

- [cos 8g COS 9g sin (¢J)A + sin ¢g COS (°J)A] Egc) (8.11a)

[
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(6)

Egc) = [(cos 8g sin ¢, cos (¢J)A + oS 9, sin (¢J)A) cos g,

A;
- (< §G =(A)
(sin 8, sin ¢B) sin 8g,’ ] Esy

B

- [cos 8 sin dg sin (¢J)A - Cos ¢, coS (¢J)A] Egc)

Eég) = [-(sin 85 cos (¢J)A) cos eéf) - (cos es) sin eéﬁ)] EgA)

G

+ [sin 8 sin (¢J)A] Egc)

Return the results of (F) to the main program.

(A)

(8.11b)

H

(8.11¢c)




! 9. EFFECT OF GROUND REFLECTIONS
- ON THE SCATTERED FIELD

In this section, we will evaluate the effect of ground reflections on
the scattered field at the antenna. We will also discuss the procedures for
implementing these calculations on the computer.

The calculations to be performed to obtain this term in the total field

can be divided into two phases, as follows:

Phase 1: Calculation of the field of the plane-ﬁave scattered from the

body toward the ground reflection point G.

Phase 2: Calculation of the plane-wave reflected from G and propagating

‘ toward the antenna A.

Phase 1 of these procedures begins with Eqs. (8.4a,b,c) with superscripts
t and subscripts G rather than A. This step is followed by the equivalent of
. Eqs. (8.5a,b) with G substituted for A, i.e.,

(6) . 2L
cos eSL = Feg (9.1a)
(6) _ el
sin 8¢/ Feg (9.1b)

We note that, in this case

| Fsg * J"‘s - "s)2 + (yg - ys)z + (zg - 25)2 (9.2)

and (from Eqs. (6.20e,f,g)]

. .
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S = Scatterer center
G = Ground reflection point
A = Antenna

Figure 9-1. Ground-reflected Scattered Field
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S
Xp = Xo ¥ —— (X5 =~ Xe) (9.2a)"'
G ) zg + z, A S
%
Y6 s Tz (¥p - ¥g) (e.2b)"
25 - 2 = -Zg (9.2¢)

From Eqs. (9.2a,b,c)’

r4
= ( ‘ZS—;S—ZA' )j(xA - Xs)z + (YA - .Ys)z + (ZA + zs)z (9.3)

’sG

It will be recognized that ro. as given by Eq. (9.3) is, except for the
factor zS/(zS + zA), the distance from the "image" of the scatterer center, lo-
cated at (xs, Yo -zs), to the antenna. The factor zs/(zS + zA) implies, as
supported by our intuition, that if Zg = 2p, then rsg is one-half of the
image-to-antenna separation distance. If 2g >> 2, then re. is the image-to-
antenna separation distance, and if Zg << Zp, then rsg is the separation
distance multiplied by the ratio of scatterer center height to antenna height.

The lab frame coordinates of the ground-reflection point G, (XLG’ Yige ZLG)’
are calculated from equations analogous to Eqs. (8.6a,b,c), where (¢J)G replaces
(¢J)A and coordinates (xg, yg» zg) replace (xg, Ya» zA).

We will now summarize the steps required to implement these calculations
on the computer. The steps A through G below are analogous to signs A through
G in Section 8.

A. The complex field components Eég) and Egs) are extracted from the

output of the Barber program. These components are analogous to Egﬁ)

9-3
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and Egc), where the scattering process G (scatterer to ground reflection
point) replaces the process A (scatterer to antenna). These components
are fed from the Barber program into subroutine BOS (see Step A in the
summary in Section 8). It was indicated in Section 8 that vari-
ables Xas Yps Zps Xgs Yo oo °B and eB are read into BOS form the main
program. Also v, the complex refractive index of the ground, is read
into BOS from the main program.

8. The following computations are made: [analogous to Eqs. (8.7a,b,c)

where xg, yq, Zg replace x,, yj, zA], [with the aid of Eqs. (9.2a,b,c)']

z

DSGSJ(XG- xs)z"’(yG’.Ys)z'(‘z's':S—z:)OSA (9.4a)

1, ¥ " s
% = tan (X—G-—_—x;) = $sa (9.4b)
-
[Eq. (9.3) repeated and renumbered]
) r -(——zs—)j<x-x)2+< -y )P (2 * 2)¢ (9.4c)

§- 6 "' Zg + z, AT %S A" s AT %S '
s C. Using the results of B8, cos (¢J)G and sin (q;J)G are computed from

Eqs. (6.22¢c,d) (repeated and renumbered below): '

i

Pep €OS 6, COS (¢, = dpc) + sin 8
cos (3,)g = SG 8 B~ %5’ T % 3

} [pSG cos 8, cos (¢B - ¢GS)‘+ZS sin eB]2~+[pSG sin (¢B - ¢gs

i (9.5a)




]
'QSG sin (¢8 - ¢GS) : %

, B sin (¢,). =
e [per €OS B, COS (05 = doc) + Zo sin 8,12+ [ocn sin (o, - )]2
SG 8 g8~ %S S 8 °sa B~ *6S

(9.5b)

where

Psg = (X5 - xs)2 + yg - y{)2

ceanl (J8 T Ys L 1 YA s
ogg = tan ( % = s ) = tan™" ( EQ;T-TF' )

D. Using the results of B and C, X 6 Yig and z) are computed from

equations equivalent to Eqs. (8.6a,b,c) where Xg» Ygr 2g and (¢J)G

replace x,, yn, Z, and (¢J)A, respectively (As is the case with the

' antenna, the ground-refliection point G is in the (xL - ZL) plane;
hence, we know that Y6 *® 0 and we don't need Eq. (9.6b) in the com-
. putations).
L
X = (cos 8g €OS g COS (¢J)G - sin %g sin (¢J)G](xG - xg)
+ [cos 8, sin ¢g cos (o) + cos 45 sin (0)61lyg - ¥s)
+ [sin 8g coS (¢J)G] Zg (9.6a)
Y6 ® -[cos 8 €OS g sin (¢J)G + sin 0g COS (q;J)G](xG - Xg)
— - [cos 85 sin o5 sin (63)q = cos oy cos (8,))lyg = ¥g)

-G RPAY Thaeiy e CPrS T g RE AN Ly g v O



F.

- [sin 8g sin (¢J)G] zg = 0 (9.6b)
26 ° (sin 8 cos ¢B)(xG - xs) + (sin 8g sin eps)(yG - ys)
- (cos eB) Zg (9.6¢)

From the results of A, B, C, and D), cos egf) and eéf) are computed
4
from Eqs. (9.1a,b) (repeated and renumbered below):

(6) _ e
cos @ = — (9.7a)
SL rSG
[% el
sin egf) . —rl;g— (9.7b)

From the results of A, B, C, D, and E, compute Egg), Egg), and Egg)

from Eqs. (8.4a,b,c) (repeated and renumbered below):

= [(cos 8g cos ¢g coS (¢J)G- sin 9g sin (¢J)G) cos egﬁ)

5
- (sin 8 cos ¢g) sin eéf)] E(G)
- [cos 8g COS g sin (¢J)G-+s1n ¢ COS (¢J G] E(G) (9.8a)
Egg) = [(cos 85 sin o5 cos (4;)g*cos o5 sin (4y)q) cos egf)

- (sin 93 sin ¢B) sin 9(5)] E(G)
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x - [cos 0g sin ¢ sin (¢J)G' cos ¢ CoS ¢J G] E(G) (9.8b)

Eég) * ["(S'ln 88 cos (¢J)G) cos egf)- (cos QB) sin G(G)] E(G)

+ [sin 8g sin (¢J) ] E(G) (9.8¢)

G. Return the results of F to the main program, in which the remaining
part of the computation, Phase 2, is performed.
-

To continue with Phase 2, we must calculate the fields of the ground-
reflected plane-wave due to the scattering process. To this end, we invoke
equations analogous to Egqs. (5.18a) and (5.19), but in a different context.

Equations (5.18a) and (5.19) contain the (x, y, 2) comognents of the

—~ vectors §+ and E’. The analog of g' in the present development is a vector
Bss which we will rename Eg, and which is the unit vector parallel to a vector
originating at the scatterer center and terminating at the ground-reflection
point G. The analog of §+, which will be called g;, is the unit vector parallel
to a vector originating at G and terminating at the antenna A. It is easily
deduced from these definitions that (where vectors rse and EGA) Eg and E; are
illustrated in Figure 9.1.

- Isg | X(xg - %) + §lyg - ¥g) - 2(z)

Bg = X Bgy * ¥ Bgy ¥ E Bsy = 'g" =

[ ]

JOg - %)%+ lyg - yg)¥ + 25

(9.9a)

and
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;GA . E(XA - XG) + z(yA - yG) + -%(ZA)

+ + A 4+ A
] Be ®* X Be, Y Y Be, +2 =
. 6 J(xA - xG)2 +(yp-yg) t 2y

(9.9b)

We invoke Eqs. (9.2a,b,c)' and (9.4c), and recognize that [using Eq. (6.20e,f)],

similar relationships can be derived for Xp - Xg and Yp - Yg

Y4

A
Xg = Xg = E;f;‘;; (XA - XS) (9.10a)
zy ;
Ya- ¥ = vz (yp - ¥s) (9.10b) ;
A ) ;
! .} 2 2 2
| "GA T T v T Sy - 2902 + (g - )+ (zy + 2g) (9.10c)
E ! e S
We now invoke the analog of Eq. (5.18a) in a form suitable for the present
. discussion: '
Y.
ik - - o 3 -
] £(GA)| | 1:(6A)] . [n(GA) o(GA) o(GA)||E(G)] . [p(GA)}|E(G)
[Es Esx Ret Rerz’ Rens|[Bsx'| = [Re JlEs
| =(GA) (GA) o(GA) o(6A)||=(6)
Esy Re2r” Re2z' Reas'|| Esy
« £(GA) (GA) o(GA) (GA){] =(6)
2 sz Reat Resz Ress’|| Bz | (9.11)
-
= where the elements of [Eés)] (whose propagation vector is k, gg) are given by
Egs. (9.8a,b,c), where [EgGA)] (whose propagation vector is Ky Eg) is the field
of the plane-wave due to the scattering process propagating toward the antenna
' after ground-reflection and where the elements of [RéGA)] are the same as those
- in Eq. (5.19) except that Bx' By. Bz. Bh and Y, are replaced by BSx' BSy’ BSz’
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BSh and Y§z9 respectively.

We can now return to the summary of steps in programming of the calcu-

lations. The steps in implementation of Phase 2, continuing after Step G, are

as follows:

H. Compute the following variables which will be needed in subsequent

computations [from Eqs. (9.9a,b) and (9.10a,b,c)]

4
A 7 3 Z
'm=§T§ﬂM‘%)*Wrﬁﬁ*(ﬁ*%)

- Zg (xq = %g)
Sx 2 + 2, Tsg
o zg (yp - ¥s)
ottt s

.(9.12a)

(9.12b)

(9.12c)

(9.12d)

(9.12e)

(9.12f)

(9.12g)

PL Y SRR .




gy = Jl8g 12 + (8, )7 (9.12h)
Z

Bez ;éi -+ Jr- (6} (9.121)

Yo, = M - (85,2 (9.123)

vi = - (85 (9.12)

~

Using the computations of Ege), §§S), and Egs) performed in F and

X z
the variables computed in H as inputs to this step, compute [EéGA)]

through the matrix equation in Eq. (9.11) (repeated and renumbered)

(£S5 = a{®A3eE(S) (9.13)
where
a(GA) A(GA)

Bk ™ ColBsy Bsy) Regy

Y;z ' lB:' 1
ColBsx» Bsy) = (=% . 8] ) —=7
z

¥ F S
'YSz [(BS"I) + IBSZI YSZ]

S(GA) _ o+ 42 4,2 + +
Rty = (B5y)” - (Bg))® - I8g,l v,

9-10




R(BA) L GA) , , ¢ s

Re12’ = Rear’ = 28, 8,

n(GA) = (at Y2 + 42 + ., o+
Rezz = (B5y)® - (85,)% - (8¢, ¢,
E33 Sh Bzsl Ysz

(GA o(GA) _ 2(GA ~(GA
M - RS - Ry = R{SA) .

E13 £23
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10. TOTAL SPECTRAL FIELD AT THE 0BSERVATION POINT
AND ITS INVERSE FOURIER TRANSFORM

The plane-wave spectrum of the x, y, and z components of the total

electric field at the observation point (receiving antenna position) is the

end result of the calculations described in the previous sections.

Referring back to Section 2, the plane-wave spectrum of the electric

field is the superposition of those of four fields, as follows:

(1)

(2)

(3)

(4)

The contribution from the cable slots as if the cable were in free
space (the sum of the fields from all the slots, neglecting the
effect of the ground). The individual slot fields are denoted by
Ega)(gh) in Section 2. The calculation of these fields is described
in Section 4.

The contribution resulting from ground reflection of the plane-wave
spectrum of the field resulting from excitation of the slots, which

is denoted by E(b)gh) in Section 2 and whose calculation is described

2

in Section 2.

The contribution due to scattering from the target directly toward

the antenna of the superposition of direct and ground-reflected plane-

wave fields [i.e., E(a)(eh) + £®)(g ), which is denoted by E{C)(g,)
-+ - - +h - +h

in Section 2 and whose calculation is described in Sections 6, 7,

and 8. _

The contribution due to ground reflection of the scattered field,

which is denoted by E(d)(gh) in Section 2 and whose calculation is

is described in Section 9.

The final step in the analysis is a two-dimensional Fourier transformation

which transforms the spectral field components, which are functions of Bps into
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actual field components which are functions of position.

In what follows we will consider this problem in a generic sense. Con-
sider a spectral field component denoted by E(gh). We would like to perform
a double Fourier transform to convert this into a field component E(I)' where
r= (x,y,2) = arbitrary point in space.

The transformation equation is (see Appendix III)

Jk Jk_B'r o
e = (2] gy e &g (10.1)

We now convert both r and 8 to polar coordinates, i.e.,

r= p(z cos ¢ +y sin ¢) + zz (10.2)

where

o==‘/x2\‘y2 , ¢ = tan! (%)
Also:

8 = Bh(g cos ¢, + i sin ¢g) + g 8, (10.3)
where

R
Bp=feZ o6l o= tan () 8= 18,0, (8,0 = 1< 6

X

We express E(gh) as a function of $g and Bh’ i.e., we rename the function

arguments as follows:




E(8,) = E(8, o) (10.4)

From Eqs. (10.1), (10.2), (10.3), and (10.4), we can write

J ko 2 1 2n ~
E(:) = ( —27‘.—) j d Bh Bh J d ¢B E(Bh’ ¢B) """
(o] (o]

Jk_pB, cos(¢ -9) jk le-B
—— o h B ‘@ 0 h (]0’5)

which reflects the fact that By < 1.

We could now invoke the well-known Bessel function relationship

L. © .
estme - Z Jn(x) eJﬂe

(10.6)
n=-8
which, when applied to Eq. (10.5), would result in the expression
J ok o0 . 1
. 0 |2 ~iln¢-(n/2)] —————
B = ()" 1oe d 8 By Iplk 0 8y) -
0
2n ~ jkon1-Bh Jneg
- [ 4 0g Elgye ag) @ e (10.7)

0

Equation (10.7) is perfectly satisfactory from an analytical viewpoint,
but preliminary investigation shows that it would be prohibitively time-

consuming to implement on the computer. As an alternative technique, we write

the ¢B integral as:
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2. 3% pi 05,
e W

& ' ] () o\
= Yy O + & ! et
I¢6 ) o l(fh dli I) c (]O )
o
where ¢ = 0, - ¢
3 )
Recognizing that the function
- JK pf, coss !
F(0%5 po o 8,) = By g0+ 6) @ O 1 8 (10.9)
8 h h* e
can be expanded in an expo.ential Fourier series in ¢é, we write
o Jn,')é
Flogs p» & 8 = ) cplo, ¢35 ) e (10.10)

Za

It follows from Eqs. (10.8), (10.9), and (10.10) that

Jno,

2
I, = 2 cple, o5 0) J d ¢g e b= on colos 05 8,)  (10.11)

¢ p—ga 5]
3 n=-o o
where we note that

JkopShCOS¢8

2 -
Colon 3 8y) = 5 | d 0 Elgy. ap o) e (10.12)

0
Jt follows in turn from Eq. (10.11) that Eq. (10.5) can be expressed in the

form

(3 ko)2 1
) - [ e
o

2 fi-62
co(Ps @3 By) (10.13)

The evaluation of co(p, K 6h) through Eq. (10.12) and the subsequent




EX)

evaluation of E(ﬁ) through Eq. (10.13) are accomplished numerically. Un-
fortunately, for high accuracy these computations require a very large amount

of computer time, particularly that of Eq. (10.12).

In the inverse Fourier transformation of the spectral fields

[E(a)(a ) + E(b)(e )] of Section 2, 1i.e., those that exist in the absence of
-~ =h" 5 '3h

the scatterer, the point in space at which the fields are to be evaluated is
the antenna location. In the coordinate system used in our problem, the

antenna (coordinates X Ype Zp such that p = Pp = Jxﬁ + yz, Z= ZA) is
located near the point x = 0, y = 0. For that reason, the exponent in

JkoBppcos(dg-¢) . . . .
e is not necessarily large in those calculations. In fact, it
is zero if the antenna is placed exactly at the origin. Even if it were
assumed that the factor E(Bh, ¢B‘ + ¢) on the RHS of Eq. (10.9) is "slowly
varying" in the angle ¢é (which would seem to be a justifiable assumption be-
cause of the near-symmetry of the circular cable ("near" because of the cable
attenuation; without that attenuation the same amount of energy would be
leaking out of all the slots in the cable. The attenuation around the cable
is sufficiently small so that the distribution of energy from different siots
is quite close to uniform) the stationary phase method or some variation there-
of would not be easy to justify. Hence, the full numerical integration tech-
nique is used in the evaluation of the field components in the absence of the
scatterer.

In the case of the superposition of the direct scattered field and the
ground-reflecteq scattered field, [(E(C)(Eh) + E(d)(gh)] in Section 2, .he
Fourier transformation is taken at the center of the scatterer, which is

located near the cable. Hence, in this case

- p = g ="x§ + yg =+ 8 , where [8R| << R (10.14)

——
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The factor (ko Pg Bh) in the exponent in Eq. (10.12) is large enough to

justify a stationary phase approximation provided eh is at least as large as
0.01 and provided we can assume that E(Bh. 0g + ¢) is “slowly varying" in o5.
{ { There is marginal justification for this assumption in this case, since the

scattered field may be significantly variable with ¢é. However, it is still ‘
likely that it does not vary in a highly oscillatory fashion with ¢é and that

JkgpgBpcoseg

1 the factor multiplying e is still "slowly varying" compared with

that exponential factor. Hence, the stationary phase method, based on the

assumption that the integrand consists of a slowly varying factor and a highly

Dok il e M

oscillatory exponential factor will be invoked to approximate the ¢é integral.

The major contribution, in this case, comes from the stationary phase points.
Because of time and financial limitations in the execution of this project,

it is not possible to carry out an extensive study to determine the validity

of the stationary phase approximation for this problem. Further studies might

dictate a full-scale numerical integration over ¢é, which was originally

planned. Such an integration is feasibie, but preliminary studies indicate
that it would require a very large expenditure of computer time to accomplish.
Estimates indicate that this would exceed the project's resources, both
. temporal and financial. As a compromise, one might consider a numerical inte-
gration over a small range of angles near ¢é = 0 and 7 (which are the stationary
s phase points) which seem intuitively to be the directions in which most of the
incident wave's energy would propagate. Even this approach would be much
L more computer-time intensive than stationary phase.
Originally, we considered a FFT algorithm. After a careful perusal of the
problem, it was decided that this would not be much help because its primary
utility is in reducing the number of computation points from N2 to N Tog N in

computations of the discrete Fourier transform at N points. In the present

10-6
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computation, the Fourier transform is evaluated at only one point (the scat-
terer center position). A two-dimensional Fourier transformation on By and
gy is performed at that point, but because Bh = JBE + 83 js between 0 and 1,
the polar coordinate form (rather than the rectangular coordinate form) is the
natural one, and when cast in this form, the problem reduces essentially to a
single Fourier transform-type integral, that over the angle dg> and a subse-
quent integration over By, The latter is not necessarily a Fourier transform-
type integration, because z, is so small and might even vanish, in which case
this last step reduces to an ordinary integration problem which has nothing
whatsoever to do with Fourier transformation.

The stationary phase technique in this case involves the differentiation

of the phase ko P By COs ¢é in Eq. (10.12) with respect to ¢g and the setting

of this derivative to zero in order to find the stationary phase points.
a [} = wCi ' = ! =
53; (cos ¢8) = -sin ¢g 0 . ¢g=0orm (10.15)

For ¢é near zero and Bh £#0

J gpBycoseg ejk opeh{1-£(¢é)/2]2}

e (10.16a)
For ¢é near v and Bh £0
(0g = m + Adg, |8dg]| << m)
2
Jk pB, coSH. -Jk o8, (1-[(26:)/2]°}
JJKoPBnCosty  Ikophpll-Liseg (10.16b)

From Eqs. (10.16a,b) and (10.12),

10-7




b 2t Subi o JURNE 24

et ety o s = e n AN s e 0 B it e e e ki e

BNt 2t sdesses il in vistmateltmbytumoii

. . 11212
. 1 = Jkopﬁh , 'Jkopsh(¢e/2)
colps ¢ 8y) = 5 E(By, ¢) e d ¢g e

- - 2 ?
o =Jk.pPB JkoPBR(20:/2) ;
e mr e e O N[ dlagg) e O "B |
- j
|
1
s JkoPBh - jx8 i
m_eh-ﬁ {E(8y> ¢) e dx e
-0 i
~ -Jk,p8 i 2
+EB L, meo)e O N fw dx e3* } (10.17)

But

-, 2 00
(n dx etIX" = 2{j dx cos(x?) ¥ Iw dx sin(x2)} =J@§(1 )
J

- 0 (o]

;j%
/T e (10.18)

Substitution of Eq. (10.18) into Eq. (10.17) results in

{E(Bh, ¢) e
2m 0 P Bh

Co(Do ¢s Bh) =

. -3(k o8 =)
+E(gamtole © "V)ifg £0 (10.192)

If B, = 0, then ¢é is arbitrary. Setting ¢é equal to zero in Eq. (10.12), we

have

cops 03 0) = E(0, 6)  if 5, =0 (10.19b)
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The numerical integration process is now reduced to a single rather than

a double integration.

In practical computation, we must choose a small value

of By which we may call Bho’ below which By, may be approximated as zero,

(this may be, for example, at B, = 0.01), i.e., Eas. (10.19a,b) may be re-

written as

. i
. . 1 J(kopﬁh‘z)
co(p! ¢9 Bh) =

{E(Bh) ¢) e
T Ky 0 Bh

~ -ilk o8, -7)
+E(Bh:¢+")e th}

if 8, 2 Bho
= E(Os ¢) if Bh < BhO
Using Eq. (10.20) in Eq. (10.13), we obtain
(5 k)% . 8 ik zJ1-8
- 0 ho 0 h
E(r) = —5— {E(0, ¢) f d 8, 8, e
)
1 . j(k_oB, -7
Y21 k. p
0 Bho

. =ik p8,-7) 3K 2’1-62
+EgLo+me O NT 0

But (since Bho << 1)
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K T 4 Loa _

ho d oon O\Jl\nl.}l |~h . -“__.-!—' {QJLO?.’.]' “h() \/1 ) Jk Ve

- h'h ik Tz “no - © )

0 (o]
1 J‘kUZ!l--"H;:"(“- jkOZ “i?;() jkoz
+ Tty [L' - @ ] 1 e © (]0.?2)
¢ 2
3w, z)

Substituting Fq. (10.22) intu [g. (10.21), we obtain the final approxi-

. S *
rnaie form of E(r), i.e.,
I

2 -
0 S AU, k2
E(r) - e {(~2°-)~’ E(0, 4) ¢ ©

I j(k nt =)
1 f e MARPNA N
Foee o dgpove [L(B, ¢) e
V25 X p 5 h h n

Q N
ho

= ; N sk zheg?
J(koDBh~4)] eJkOZJI—ph

tE(f. 9 tu) e } (10.23)

The intogration on o indicaled in Eq. (10.23) is carried out on the
computer using a Simpson's rule algoritim. 1In the case of the scattered

fields, the parametavs p and ¢ are those of the scatterer center

= = —é_ .;. _1-2' - = = - ] :y§_
P = pg =Xty : ¢ = &g = tan ( « ) (10.24)
S

* In the numerical computalions, only one of the two terms in (10.23)
is used in any single computation. The first term wherain ¢ = ¢es is used
for scatterer positions outside the cable and the second tefn
wherein 4 = &+ u, is used for pusitions inside the cable.
This choice is’based on intuition and the knowledge that the predominant
cnontribittions come frem the portion of the cable near the scatterer, and
from values of the propagation vector £ nearly parallel with the line-
cf-sight from the source. >
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11.  NUMERICAL RESULTS AND CONCLUSIONS

11.1 Computer Problems

The numerical results for a number of cases that were run on the North-
eastern University Faculty VAX are shown fn Subsection 11.4., There have been
extensive computation problems due to the transition from the CDC Cyber 70
to the VAX. Among these were: overflow problems due to the reduced range of the
VAX; reprogramming required to adapt programs already running on the Cyber 70
to the new machine, thus requiring extensive debugging time; hardware errors
on the VAX which have resulted in considerable down-time; and the necessity to
use a batch processing system which severely 1imits the number of cases that
can be run per day.

Because of these computer transition problems, which were beyond the
control of the technical staff working on this project, there has been a delay
of several weeks in the execution of production runs on the computer.

The computations performed on this problem are quite extensive and
require considerable running time. For this reason, only a limited number of
cases were computed for presentation in this report. The computer program is

available and could be used to study many more parameter regimes that might be
of practical interest.

11.2 Program Variables

For the results presented in this repert, the following variables had

fixed value ranges based on use of a specific cable configuration and some

empirically determined values of certain parameters given to us by the Contract

Monitor.
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Parameters associated with the cable:

Fortran Algebraic

, Name Symbo] Definition Value
. ~— T
R _4 Radius of cable 24 '
: configuration in (approximation *
: ' meters based on circum-
3 ference of 151
> meters)
A a Inner radius of .00476
coaxial cable-
meters
]
B b Quter radius of .0127
coaxial cable-
meters
Length Ly Slot length (along .003
cable); same for
all slots-meters
Width Wy Slot width (around .0155
cable); same for all
| slots-meters
| —
EPSILONCA €ca Permittivity of 15.05(10"12) =
cable material- 1.7¢ H
: farads/meter °
i
W Y
3 SIGMACA Oca conductivity of 0
¥ cable material -
B mhos/meter
% NSLOTS Ns Number of slots 31,723
' , on cable
: PHIBAR %0 Azimuthal angle 0
along the cable
: of Slot #1. (The
g slot nearest the
| power source) in
{ j ground frame
L
{ T
i " PHI o, " =¢" Angle of L
! o =
’ o o slot center 3" 4°
around periphery
of cable
11-2
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Fortran Algebraic
Name Symbol

Definition

Value

NMODES ----

Number of modes
of each category

1 TEM mode
(quasi-TEM or
coaxial mode h
observed to propa-

gate in this cable
as the principal
mode)

ALTEM o (TEM)

Attenuation of
TEM mode-nepers/
meter

.002

ALTEN o« (TE)

Attenuation of
TE mode- nepers/
meters

ALTMN }an(TM)

Attenuation of
TMn mode-nepers/

meter

Radio frequency
in Hertz

57(10%)=
57 MHz

ATEN a(TER)

Amplitude of TE

mode-units not n

indicated here, be-
cause this is treat-
ed as a scale fact-

or and its units

are not important

ATMN a(TM)

Amplitude of ™
mode-same re-
marks as above
concerning
units

It

g
M
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Fortran Algebraic Definition Value
Name Symbol
VO v Voltage between 1
0 inner and outer
convectors of
coaxial cable-
used in amplitude
of TEM mode-volts
E e Permittivity of 35.416(1071%) =
ground-farads/ s¢
meter 0 '
SIGMA o Ground conductivity 0.002
-mhos/meter
XAP Xa x-coordinate of 0
antenna-meters (antenna at center
of circular cable
configuration)
i
[ - YAP Ya y-coordinate of 0
I antenna-meters (same remarks
as above)
- ZAP ) z-coordinate of 0.5
‘ ~ antenna-meters
7-?.‘ A
- BH B Magnitude of (x-y) Varied from
e\ plane projection 0tol
;4‘ Of § .
= i.e. Vel + 82
' PHIB %8 Azimuthal angle Varied from 0°
of (x-y) plane pro- to 3600
jection of 8 , i.e.
tan"1( By
{ By '
11-4
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Parameters Associated with the Scatterer

Fortran Algebraic Definition Values
Name Symbo1 ;
XSp Xg x-coordinate of Varied from
. scatterer center- case to case
meters
YSP Y y~coordinate of Varied
scatterer center-
meters
2SP zg z-coordinate of Varied
scatterer center-
meters
THB eb Spherical polar Varied:
angle of long "o ed
axis of prolate gaZSrcazggfght
spheroidal scatterer ?
(in ground-frame) _%_ for “crawling
man" cases
PHB ¢b Azimuthal angle Varied
of Tong axis of
scatterer (in
ground-frame)
ES e Permittivity of 408.992(10711) =
s scatterer material- 46.2¢ =
farads/meter X ‘"o
/3(6050)’
based on
Reference D.19
SIGMAS Og Conductivity of 0.592
scatterer material-
mhos/meter based on
Reference D.19
( RS s x52+ys2 = radial Varied
computed .
coordinate of
variable) scatterer center
in ground frame
PHIS o tan-Yy,
(computed ~— azimuthal Varied
variable) s

angle of scatterer
center in ground frame




Fortran Algebraic Definition Values

name Symbo1

RS RS Radius of prolate 0.25
spheroidal
scatterer-meters

LS Ls Length of prolate Varied
spheroidal .

scatterer-meters
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11.3 Delineation of Cases Studied
The outputs of the computations are:
|E§q)| = amplitude of x-component of the electric field of the signal at
the antenna where q = o for the field in the absence of the scatterer, q =s for
the scattered wave field and a = (0+s) for the superposition of the field without
the scatterer and that due to the scatterer.
. ]E§Q)] = amplitude of y component of field at antenna
|
IEiq)l = amplitude of z component of field at antenna
~
(q) =\[ (q),2 (q)2 (9),2
BV = I Y1 1 2 4 1,19
The parameters to be varied in these computations are:
Xg = X component of scatterer center-meters
Yo = component of scatterer center-meters
z =2z component of scatterer center-meters
Ls = Long dimension of scatterer = Height of "man"-meters
Ly = Height of "stilts" in cases where the intruder is assumed to be
elevated-meters
. -1
4 ¢ = tan Ys \= Azimuthal angle of scatterer center
X
s
‘ Axs T X 7 X s where X = X coordinate of cable-meters
", ' Ays =Yg~ Yo where Yo=Y coordinate of cable-meters
;- Arg = rg - » where ro = r coordinate of scatterer center-meters

R e s
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and orientations, are the field amplitudes of the antenna

The first set of results which are of course the same for all scatterer positions

in the absence of the

LRt e el i

scatterer. These are as follows:*

) . 4 ses0107)
e = 2.3888(10°2)
) = s.0225(10)

The computed field in the absence of a scatterer is predominantly in the

y-direction. The interpretation of the result will be discussed in Subsection 11.4.6.

The cases involving an intruder are delineated below.

Cases I : “"Upright Man" Model

These cases involve a model of an intruder walking in upright position across the
cable. The intruder starts at a point outside the cable and walks radially inward,
crosses the cable and continues to walk toward the center of the configuration.

Pacause of time limitations computations were made for only a few positions
on either side of the cable. Since the effects should not be entirely circularly
symmetric, due to cable attenuation and other effects, these computations were made
at four different azimuthal angles.

Case 1-A

"Upright man", walking radially inward across cable; @, = 0%, ¢, = 0°, ry varied

from 28 to 17.5 meters in stens of 1.5 meters, z;lS/Z(see diagram belnw); ¢s= n° {ij.s,,
nath along x axis in -x direction),

* These "field amplitudes" are actually relative quantities and are not intended to
represent the actual field amplitudes. If the true values of the power generated
by the source in the cable were used here, these numbers would be true field ampli-
tudes in volts per meter.

.
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z Case 1-A (continued)

Side View Downward View Y

Path of
intruder

. . cabl
9 Path of intruder am
] L ——
o . S ?
- Zg To antenna
Ground -

17.5 ﬁrﬁ

? Cable cross-section 28
r m
1
; Case I-B; same as I-A, but ¢s = % ; path along y axis in -y direction
; | Downward View
Y
[ 1
{ : 1 I/”J 28 m
24m
I [ & L
U
17.5 able _,////
""
\35”
5;' Case I-C, same as I-A and I-B but I H path along x axis in +x direction
; ! Downward View y

Path of
intruder
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Downward View

17.5m
24 m

B

Path of
intruder
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Case I-D: same as 1-A, 1-B and 1-C, but ¢g = 31 ; path along y axis in +y
4

direction.

Cases II: "Elevated Upright Man" Model

In these cases the intruder is again upright, but elevated, i.e., on stilts.
The stilts are assumed to scatter no energy; hence the only change in the mathematical
model is that the scatterer center is raised (relative to Cases I) by an amount 15,
the height of the stilts.

These cases are evaluated with the intruder at a few fixed positions, to

determine at those positions the effect of various elevations on the field

components seen at the antenna.

Case 11-A Upright man on stilts; 9 = 0° » O = 0°; L = Hetght of stilts;

I LT R varied from 0.4 to 2.0 meters; x = 22, y, = 0.

"Case I1-B. Same as Case II-A but x, = 23.5
Case II-C. Same as Cases II-A and II-B but X = 25

11-n
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® Loy =0 Lz =1,

-
Yo = 03 LS varied from 1.6 to 2.08. This case is for the purpose of

Case I11I:; "Upright Man“, standing at ground level; @b =0

examihing the variation of the field components seen at the antenna with the height

of the intruder. Case III-A, X = 223 Case III-B, x, = 23.5; Case III-C, Xg = 25.

Case IV: "Crawling man" Models

In these cases the intruder is “"crawling" radially inward from a position
outside the cable to a position inside the cable. The spheroid in the model is lying

on the ground surface with the long axis pointed in the radial direction.

. M : " = = 0 = = :
Case IV-A: "Crawling man", 0, % » ¢y = 07, 2=RJ2, ¢, = 0, rg varied from 28 to
17.5 meters in steps of 1 meter; path same as in Case IA.

Dovnward View y
Scatterer
Cable
M X o= Path
7P T R —

!

peme—re-——c

—

ok o by v .+




CASE IV-B Same as Case IV-A except that ¢ = I path same as in Case I-B.
) 2

—
1} d Vi 2Rs
ownwar 1ew Path

T'
._in_]ffii::Ss.
A \JGZ |

~~
% Case IV-C: same as Cases IV-A and IV-B except that ¢b = T 3 path same as
f Case I-C.
R i Case IV-D: same as Cases IV-A,B,C except that ¢b = %;, path same as Case I-D.
Case V: Prone Position Transverse to Radial Direction
, In these cases, the intruder is in a prone position, but the long axis
js transverse to the radial direction. Otherwise, same as "crawling man" cases.
i In cases V-A, V-B, V-C and V-D, ¢, = 0, 7/2 7 and 37/2, respectively.
{
i
E - 1-13 ;
]
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In addition to Cases I through V above, two other sets of auxiliary computations
were made. Their purpose was to determine the magnitude and polarization of the
‘ e

§ fields illuminating the scatterer at the positions assigned to its center in Cases I

through V.

The first set of computations were of the field components due to the cable

without ground reflections at the values of p and ¢ corresponding to the scatterer
center values Pg = 17.5, 19, 20.5, 22, 23.5, 25, 26.5 and 28 meters. Four sets of

these runs were made, at ¢ = 09, 909, 180° and 270°. These values of p and ¢

correspond to the scatterer positions in Cases I-A, B, C, D, IV-A, B, C, D and
V-A, B, C, D.

The second set of these illuminating field computations were identical with the
first but with the inclusion of ground reflections, i.e., in the first set of
computations the ground permittivity is that of free space and the ground conductivity
is zero, those assignments being equivalent to the removal of the effect of the

o ground. In the second set the values of ground permittivity and conductivity were
| those indicated in the table in Section 11.2 above. Comparison of the first and
second sets of results should allow a determination of the effect of ground reflections

on the fields illuminating the scatterer.

11-14
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11.4 Presentation and Discussion of Numerical Results

The available numerical results will be presented in this section, beginning
with the results of the study of the fields illuminating the scatterer (Subsection !
11.4-1), followed by: (Sec. 11.4-2) the "upright man" (or equivalently “radial
walk") cases (Lases 1-A, 6, C, U); the “elevated upright man" or “man on stilts*
cases (Cases II-A, B, C; Subsection 11.4-3); the "height variation" cases (Cases
I11-A, B, C; Subsection 11.4-4) and the “crawling man" cases (Cases IV-A, B, C, D and
V-A, B, C, D; Subsection 11.4-5).

In discussing the results we have tried to take cognizance of available
experimental results whenever they exist. Those experimental results mentioned in
what follows are:

Reference B.2, Figure 5, Page 10 (circumferential walk)
Figure 8, Page 13 ( " ")

Reference B.3, Figure 9, Page 15 (circumferential walk)

Figure 10, Page 16 (radial walk)

Figures 13, 15, 16, 17, Pages 18, 20, 21, 22 (circumferential walk)
Reference B.6, Figure 7, Page 12 (circumferential walk)

Figures 4, 5, 6, Pages 1, 12 {circumferential walk; analytical
results based on L. Poirier's simplified analysis neglecting
field polarization)

In all of the circumferential walk cases studied experimentally, a very sub-
stantial oscillation is observed in the results as the intruder walks around the
| periphery of the cable. This is also exhibited by L. Poirier's analysis reported

! in Reference B.6. Roughly speaking the oscillatory behavior is due to alternations

between constructive and destructive interference as the scattering object changes
azimuthal angle.
l - The experimental curves plotted in the above references are of the total
signal voltage received at the antenna vs. g the scatterer's azimuthal angle.
4 These are compared with the signal voltage in the absence of the scatterer {gquiescent

o level). The signal voltage (assuming, of course, that the antenna is linear) is

’ n-1s




proportional to the field strength of the component polarized in the direction to
which the antenna is receptive. In the case of the monopole antenna used in making
— the measurements, that direction is the vertical. Hence, only our results on IEzl,
the amplitude of the vertical component of the field at the antenna, could be com-
pared with those results. The horizontal components ]Exl and ]Ey] cannot be so
compiigﬁ, since the antenna is not responsive to horizontal fields.
e

Two points must be made before proceeding with the numerical results. First,

,/////:;/was impractical under our time limitations to plot circumferential walks; con-

sequently all results where the scatterer moves and also those results for the fields
illuminating the scatterer at various positions are presented as "radial walks", i.e.,

the field components are presented for various radial positions Pg at a fixed azimuthal

position g Moreover, the angles o  are confined to 09, 90°, 180°, and 270°. It
would be highly desirable to have results for many intermediate angles. There was
insufficient time to compute enough points around the cable to obtain meaningful i

i X "circumferential walk"” results. To do so would reguire computations for every few

i ~ degrees(e.q. 20 spacing would require 180 computations for each fixed value of ps).
For this reason it was decided to confine attention to the radial varation at fixed
azimuth angle.
! _‘ A second point is that there is some question in our minds (and no remaining
Pt time to study the question and try to improve the model to rectify the probiem if it
exists) on the accuracy of the ratio of the computed scattered fields at the antenna
(i.e., direct-plus-ground-reflected scattered fields) to the computed fields at the
‘; antenna in the absence of the scatterer (direct-plus-ground-reflected). According
- to our results the fields at the antenna (at the center of the configuration; '
;c f Xp = Yp = 0, Zy = 0.5) in the absence of the scatterer are (in dB relative to an t
L | zrbitrary reference level; the same reference level used in all of the results with

end without scatterers presented in this report):

11-16
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]
|E,| = -66.3 dB 4}
lE,| = -32.4 a8 j
IEzl = -65.9 dB
- These results will be discussed in Subsection 11.4-6.
: Certain approximations used in our analysis if not as accurate as we originally
believed, might have a different effect on the antenna fields in the absence of the
scatterer than they do on the scattered fields. If indeed that is the case, then
at the very least there might be a scale factor error in the results without the
scatterer present or alternatively a scale factor error in the scattered fields, or
possibly in both sets of fields. If that were the case, then coherent addition of
the fields with the scatterer present to the fields without the scatterer present
could produce totally meaningless results. The two important constituents of the
analysis are the fields generated by the cable and the perturbation of the field by
the scatterer. Rather than present large numbers of results on the composite fields
(a1l of which have been computed for each case studied) which may be greatly in
error because of an erroneous scale factor, it was decided to concentrate on the
direct-plus-ground-reflected scattered field components and show their behavior as

a function of various parameters.




11.4.1 Numerical Results on llluminating Fields

The first resylts presented are those of the field components illuminating
the scatterer. These appear in tabular form in Tables 11.1, 11.2 and 11.3, Columns
1 through 8. Some of the results are shown graphically in the curves of Fiaures 11.1
through 11.16.

Results are shown both with and without the effects of ground reflections.
The format for each of the curves shown is a plot of a field component in dB
relative to an arbitrary reference level against p, the radial coordinate, from
o = 17.5 to p = 28 meters. The reference level has no significance because there
are arbitrary factors which cause the computed field component magnitude to differ
from the actual field magnitude in volts per meter. All plots in these figures
and also those in subsequent figures are in dB relative to the same reference level,
hence, it is the relative magnitudes of field strength rather than their absolute
magnitudes on which attention should be focussed. Since the cable is at a radial
distance of 24 meters, the plots may be considered to be from a distance of 6.5
meters inside the cable to a distance of 4 meters outside the cable.

F-~om very simpie reasoning based on a single plane wave propagating from the
nearest cable slot to the observation point, we would expect something close to a
decay in amplitude proportional to the inverse distance from the nearest cable slot.
The coherent addition of contributions from different parts of the cable, with the
attendant variability in the relative phase etween contributions from different
cable slots, would preclude exact inverse distance behavior. However, we look for
some suggestion of such a variation with distance. Unfortunately we do not always
attain behavior close to the above.

Focussing for the monent on the "best" results in terms of correlation with

expectations based on simple reasoning, we examine the results in Table 11.3 and in
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Figures 11.2, 11.4, 11.7 showing the z-components of * ~ field as a function

& of radial distance without ground reflection.
g At ¢ = 0°, the field amplitude decays from a value of -5.31dB at a radial
distance of 0.5 meters from the cable to a value -39dB lower at 6.5 meters inside
the cable and to a value -12dB lower at 4 meters outside the cable. The inverse
distance behavior would give us a decay of roughly -22dB at 6.5 meters inside and
-18dB at 4 meters outside. Thus the rate of decay is considerably larger than would
‘b,} be dictated by an inverse distance law. This could be at least partially due to
i the importance of the approximately inverse squared contribution at a distance very
close to the scatterer,

The z-field amplitudes are not changed appreciably when ground reflections

are added at ¢ = 0°. The z-field amplitudes are slightly smaller but within about

2 or 3dB of their corresponding values without ground r:flections and the trends
are qualitatively and quantitatively the same. Since interference between direct
and reflected waves can be either constructive or destructive, there is no
certainty that the ground reflection qontribution will increase or decrease the
field magnitude. In this case, at the reflection angles at which these effects
occur, the interference appears to be mostly destructive.

At ¢ = 90° (Table 11.3 and Figures 11.9, 11.11, 11.14) the trends in the z-
field are qualitatively similar but the rates of decay with radial distance from
the cable are not as pronounced. The decay between 0.5 and 6.5 meters inside the

cable and that between 0.5 and 4 meters outside the cable are respectively 19.6dB

’ and 16.9dB without ground reflections and 24.1dB and 22.1dB respectively with
i ground reflections. These values are much closer to the respective 22dB and 18dB

that would prevail for an inverse distance decay law.
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At ¢ = 180° (Table 11.3 and Figure 11.14) the decay levels

corresponding to the above comparisions are 17.3dB and 17.5dB respectively without
ground reflections and 21.9d8 and 19.6dB respectively with ground reflections.
Again‘these values are within a few dB of what would be expected for an inverse
distance dependence. Again, as at ¢ = 0° anc ¢ = 90°, the z-field magnitudes with
ground reflection tend to be slightly lower, usually by less than 2dB, than their
counterpart values without ground reflection, indicating mostly destructive inter-
ference between direct and ground reflected waves.

The z-field results for ¢ = 270° (Table 11.3) appear anomalous with respect
to the above considerations. The same comparison exists between results with and
without ground reflections (nearly the same in both cases), but there is no obvious
explanation for the strange behavior of the z-field magnitude outside the cable
and its erratic behavior inside the cable.

The variation in the average z-field amplitudes as the angle ¢ changes
through 90° increments is substantial, being nearly 30dB in some cases. This is
not anomalous, since experimentally observed scattered field magnitudes (See e.g.
circumferential walk results in Ref. B.2; Fig. 5, Pg. 10; Fig. 8, Pg. 13, Ref. B.3;
Figs. 9, 13, 15, 16, 17, Pgs. 15, 18, 20, 21, 22; Ref. B.6; Fig. 7, Pg. 12) exhibit
a highly oscillatory azimuthal variation. Since nulls exist at some angles no
variation in dB would be anomalous. This can be explained at least partially by the
highly complicated nature of the superposition of contributions with widely differing
phases from various portions of the cable. More will be said of this in later
discussions of the azimuthal variation of our numerical results on scattered field
amplitudes.

The horizontal components of the computed illuminating fields are not

generally as well-behaved as the vertical components with respect to any resemblance




to inverse distance behavior. This is possibily due to ...2 fact that the waves from
different slots along the cable not only add ccherentl: with complirated relative
phases, but also add vectorially. In all cases, the y-componeut seems to predom-

inate.




11.4.2 Results for the “Upright Man" Cases

In Tables 11.4, 11.5 and 11.6, Column 1 through 4 and in Figures 11.17 - 11.23
some scattering results for a man 1.78 meters tall (about 5'10") and about 0.5

meters wide in upright position proceeding from {or to) a point 17.5 meters inside

the cable to (or from) a point 28 meters outside the cable. These are the cases
I-A, B, C, D delineated in Section 11.3, where A, B, C and D refer to scatterer
center azimuthal angles ¢s = U°, 90°, 180° and 270° respectively.

The first point to be made is that all of the field component amplitudes
exhibit a very large decrease (from 40 to 70dB) at ¢s = 9o° and 270° relative to

their values at ¢ = 0° and 180°. Magnitudes at 180° are generally between 20

and 30dB below those at 00, while those at 270° and those at 90° are comparable

at some positions and separated by 10 to 20dB at other positions. None of these

bl i AL Ll S

variations appear to come directly from attenuation along the cable, which is a
maximum of 2.62dB around the entire circumference of the cable. A< was discussed
in Section 11.4.1 in connection with illuminating fields, the circumferential
variations in fields illuminating the cable are probably at least partially due

to the wide variations in phase of the contributions from different portions of
the cable. If one adds to that the phase variations in the scattering process
itself, one cannot expect the scattered fields from various azimuthal angles to
follow a smooth variation or to be comparable in magnitude, in spite of superficial

indications of symmetry. If all cable field contributions were added noncoherently,

i.e., if their amplitudes or squared amplitudes were added rather than their
complex fields, the results would undoubtedly show much greater azimuthal symmetry.
Experimental results for the vertical field components (Ref. B.3, Pg. 10; Ref. B.3,

Pp. 15, 18, 20, 21, 22; Ref. B.6, Pg. 12) show substantial azimuthal fluctuations.
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Turning our attention now to the radial variation in field amplitude at a
fixed azimuthal angle most of the results in Tables 11.4, 11.5 and 11.6 and Figures
11.17 through 11.23 show a substantial decay as the scatterer recedes from
the cable outside the cable but a flat or sometimes slightly increasing response
as it recedes from the cable inside the cable. Also the peak doesn't always occur
at 23.5, the closest radial distance to the cable for which a computation was made,
but sometimes at 25 or at 22 or even further away in a few cases. Since computations
were made at intervals of 1.5 meters, the actual peaks might occur between the
computed points. But in general the occurrence of the peak at a point other than

the point directly above the cable is consistent with the same observation made

experimentally and discussed on Page 16 of Reference B.3. Figure 10 on Page 16
of that reference (radial walk) illustrates the point, wherein peak responses
sometimes occur a meter or more away from the cable radius.

Based on the simple reasoning of Section 11.4.1 we should look for two
contributions to variation of field ampiitudes with radial distance in the present
case. First, this simple reasoning would predict a variation as the reciprocal of
the separation distance between the néarest cable slot and the scatterer position
due to the expected variation in the illuminating field. Also there should be an
inverse radial distance dependence due to the %7 factor appearing in the scattered
field component. For example,(Subsection 11.4.1) we should expect from the first
of these mechanisms about 22dB of decrease in amplitude between 23.5 and 17.5 meters
and about 18dB between 23.5 and 28 meters. From the second effect we should expect
a 2.56dB increase as we go from 23.5 to 17.5 and a 1.52dB further decrease as we
proceed from 23.5 to 28 meters. This means that the net decay should be about 19.5dB
from 23.5 to 28 meters and about 20.5dB from 23.5 to 17.5 meters. If we were to base

our interpretation of the results on these mechanisms alone, we would conclude that
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the decay of between about 20 and 25dB that we observe on most of the field com-
ponents between scatterer positions at 23.5 and 28 meters is quite reasonablie, but
that the flat or even increasing response we see as we proceed from 23.% to 17.5
meters inside the cable cannot be explained by these mechanisms. |

There is another feature of the geometry which could help to explain the
great asymmetry between departures from the cable radius inside and outside the
cable. Outside the cable, as we recede further from the cable radius, the cable j
appears convex from the observation point and the distances to the cable slots
other than the nearest one become progressively greater as we move out. As we
move inward inside the cable, however, the cable appears concave and the distances
from the various parts of the cable nearest the observer become more nearly com-
parable, leading to a greater tendency toward constructive interference between
contributions from various slots.

Some of the results shown in Tables 11.4, 11.5 and 11.6 appear anomalous,
and there is no obvious explanation for them based on any of the mechanisms dis-

cussed above. More will be said of this in Subsection 11.5.
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11.4.3 Results for the "Elevated Upright Man" Cases

These results correspond to cases II-A, B, C in Section 11.3. The “man" is
placed on stilts in three different fixed positions (¢S = 0°, og = 22, 23.5 and 25,
those-radial positions nearest the cable at which fields were computed). The results
showing field component amplitude vs height of stilts at each position are presented
in Tables 11,7, 11.8 and 11.9. Selected results are also shown in Fiqures
(ps = 22), Figure 11.26 (ps = 23.5) and Figures 11.27, 11.28(ps = 25).

In all three cases, the variation with stilt height is from 0 to 2.0 meters.

The field component amplitudes in all three coordinate directions (except for
the vertical field component at pg = 25m, which exhibits anomalous behavior) there
is a decrease of between 2dB and 6dB between the case of zero stilt height and the
case of 2 meter stilt height. This variation is in the proper direction, obviously,
since the expectation is for a reduction in field strength as the scatterer is
further elevated and therefore moves further away from the cable slots generating
the fields. To examine the issue of how close the variation is to the inverse
distance variation, we note that the difference between the "no stilts" case and
2 meter stilts (since the "man" is 1.78 meters tall) is a change in the z-coordinate
of the scatterer center from 0.890 to 1.830. With a pure inverse distance law,
this would result in roughly a 6dB decay between these two cases. This is not

very far from the amount of decrease observed in most of the computed results.

T v s B SPRIPRPE Sy W IS T g S oy or p R
¢



11.4.4 Height Variation
A set of results showing field component amplitude variation versus intruder

height at ¢ = ° and a. 0g * 22, 23.5 and 25 meters (Cases III-A, III-B and III-C
‘ respectively in Section 11.3) are shown in Tables 11.10, 11.11 and 11.12. Selected results
also appear in Figs. 11.29, 11.30, Figs. 11.31, 11.32 and Figs. 11.33~ 11,35 respectively.

In each case the height is varied from 1.60 to 2.08 meters (about 5'3" to nearly
6'10", a more-than-reasonable range of heights for an adult male). In all of these
cases, an increase in field amplitude of about 6dB is observed as the height
increases over the indicated range.

This variation is certainly in the proper direction. The height range

represents an increase of about 30%, if we want to consider the field amplitude

ol aof Dttt A TSI ari e e 4.4
N .

as prouportional to the length of the scatterer, this would imply an increase of
. about 2.27dB between the response of the short fellow of 5'3" and the basketball
player of 6'10". The 6dB difference we actually observe would be more nearly
; ~ consistent with a proport.onality to the square of the scatterer length, implying
a 4.56dB increase.

In fact, the scatterer long dime-sion is about a third of the wavelength at
the frequency used in these computations and tr.: parameter EIEi is about 2 in free

)
i space. Hence no simple proportionality between the field strength and the scatterer

iength can be predicted, such relationships being usually applicable only to
Rayleigh scatterers, very smali compared to wavelength. However, for the cases
computed, we do see a positive variation with intruder height LS corresponding

roughly to somewhere between LS2 and LS3.
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11.4.5 Results for the "Crawling Man" Cases

Unfortunately, not all of the crawling man cases (Cases IV-A, B, C, D and
V-A, B, C, D of Section 11.3) were run successfully. Attempts were made to run
these c&ses immediately before the contract deadline. Some of the cases were
aborted due to computer difficulties and there was no time left to correct these
difficulties.

Most of the intended results were obtained and these are presented in
Tables 11.4, 11.5, and 11.6, Columns 5 through 12. A subset of these results are
shown graphically in Figures 11,36 through 11.39.

Comparisons of the "radially crawling man" (RCM), the "transverse crawling
man" (TCM) and the "upright man" {UM) cases are best made from Tables 11.4, 11.5
and 11.6, where for each field component, the amplitudes for g = 0° are shown
in Columns 1, 5 and 9 for UM, RCM and TCM respectively. At o = 90°, the cor-
responding columns are 2 (UM), 6 (RCM) and 10 (TCM). At b = 180°, we have 3 (UM),
7 (RCM) and 11 (TCM) and at 4 = 270°, 4 (UM), 8 (RCM) and 12 (TCM). We now focus
attention on the variation of the scattered field components at the antenna with
distance of the scatterer from the cab1e. This was discussed for the UM cases in
Section 11.4.2. Certain RCM and TCM cases have the expected behavior, beginning
with low values at pg= 17.5, peaking at or near 23.5 and decaying to low values at
28. At ¢ = 0° this tehavior is exhibited by IEX| and IEy( for RCM, but not by
lEz[, which shows a more nearly flat response as distance changes inside the cable,
but a substantial decay as the scatterer recedes from the cable radius outside the
cable. The available results for TCM at b = 0% (not all of these are available, as
indicated in Column 2 of Table 11.4) do not seem to indicate that kind of behavior,
in fact they depart from it very substantially. At og = 90°, there is a small decay

in all the components of both RCM and TCM between 17.5 and 23.5, opposite to the
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desired trend, but again a substantial decay from 23.5 to 28.0. The rates of decay
outside the cable for both ¢g © 0° and ¢g = 90° are comparable to those observed
with UM, which have already been discussed in Subsection 11.4.2.

- The RCM and TCM amplitudes for 0 = 180° and g = 270° are in general more

erratic than their counterparts for g = 0° and °s = 90°, Some of these runs were

aborted due to a difficulty in one of the subroutines in the Barber scattering
program. This problem had not been encountered before. Since it occurred very
near the end of the contract period, there was no time to correct the difficulty.
Some very small changes in angle assignments were made to overcome the difficulty
in doing re-runs of these cases. Some of the cases then ran successfully but
produced very strange results which we believed to be unreliable. Consequently,
- some of the points are not presented in the tables. In one case (TCM, g = 2700)
. ‘ the entire run was aborted and we have no results on this case.
; Comparison of the overall order of magnitude differences between UM, RCM
f ' and TCM cases at a given value of Pg and ¢ can be made from the tables. At

b = 180° and ¢s = 2700, too few computed points are available for meaningful

comparisons. It is observed that for ¢_ = 0° and ¢s = 90° (comparing column 1,

s
“i ~ 5 and 9 results) the values of !EX{ and [Eyi for RCM cases, through the range of
'jr; values of o covered tend to be roughly comparable (on the average) to the cor-
‘i} responding UM cases, but the corresponding ]Exl values in the TCM case (those
;? available) are higher by between 10 and 20dB. The [Ezl values exhibit somewhat

? different trends at 6g = 0°. The TCM values are nearly comparable to the UM values

but the RCM values tend to be higher, by as much as 20dB in some cases. At

90°, the ]Ezl values for TCM are as much as 70 or 80dB. This would imply that

&

"

s
at ¢ = 90°, the scattering is negligibly small for the RCM case relative to the

i TCM case.
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The difference in orientation between the UM, RCM and TCM cases would not alter
. expectations for inverse distance behavior, which are based on the naive thought that

the intruder has the properties of a point scatterer, i.e., subtends a small angle at

O U

both the source and the receiving antenna. That is certainly the case at the antenna,
reasonably well into the scatterer's far zone, but not so at ti!ie nearest illuminating
slot, which sees the scatterer as an extended object subtencing a large angle and |

lying in its near-zone, particularly at radial positions near 24 meters.

The differences in orientation do produce substantial differences in the
way the scatterer is illuminated and the angular position of the antenna in the
object's scattering pattern. For the UM cases, the iilumination and scattering are
both predominantly broadside, For the RCM cases, both illumination and scattering
are primarily "nose-on". For the TCM cases, illumination and scattering are again
largely broadside, but with a much smaller illunimation coverage in the vertical

! : direction than in the UM cases. All that can be said is that these differences in
geometry should result in some differences in order-of-magnitude, as is observed
in our results. But these observed differences are not always in the same

‘~ direction. That might be considered anomalous if we were dealing with a Rayleigh

i, scatterer illuminated by a single plane wave. In our model, however, we have a
21rLS and 2w(2RS)

) )
in free space are respectively about 2.125 and 0.596. With the assumed scatterer

'?;; scatterer (free space wavelength - 5.26 meters) whose parameters

| permittivity (es = 46.250), neglecting its conductivity, the wavelength in the

2ul

scatterer medium is reduced to about .774 meters. Hence the parameters s and

. )
o ZT’(ZRS) referred to the scatterer medium are now about 14.4 and 4.06 respectively.
A

These numbers indicate that the scatterer is large enough compared with wavelength

to produce scattered fields that may be highly oscillatory and highly directive.




Changes in orientation such as those between UM, RCM and TCM cizes may well produce
very pronounced differences in both the orders of magnitude of the scattered fields
and their sensitivity to scatterer positions.

- Another effect which complicates attempts at interpretation of these differences

is that of ground reflection. The assumed ground parameters (eg = 4e°, og = .002,
23 = 0.158) are sufficiently large to produce very significant ground reflection
we

terms. Coupled with the highly angle-dependent scattered fields, the ground
reflections of both illuminating and scattered fields should further increase the

sensitivity of the results to small changes in the geometry.

11-30




— e o ———— e~

.
- —

11.4.6 Relative Magnitudes of Components

The first result that warrants discussion in correction with this topic is
that near the beginning of Subsection 11.4 giving the amplitudes of the x, y and 2
components of the electric field at the antenna in the absence of a scatterer. In
summary, this result says that the y-component predominates, the x-component is
between one and two orders of magnitude below the y-component and the z-component
is comparable in magnitude to the x-component. To attempt to explain this, we first
examine Eq. (I-3a) in Appendix I. We also observe that we have assumed that the
TEM mode is the only propagating mode in the cable. For the TEM mode, the electric
field is entirely radial and the magnetic field is entirely azimuthal. That implies
that the (g X g) component in (I-3a) vanishes, the (g X ﬂ) component is entirely in
the direction of the cable axis and the (3 . E) term is in the direction of v' (%gkR).
For any given value of 8 the latter is in the direction of 8.

If all slot contributions were in phase and if there were no attenuation along
the cable, then circular symmetry would prevail. Since the antenna is at the center
of the configuration, one would expect a cancellation of the horizontal electric
field contributions from the cable slots and a summation of the vertical contributions,
based on the observations made above. The assumed attenuation of the TEM mode is
about .000728dB per degree of angle along the cable. This implies the following:

(a) if the field strength of the TEM mode were unity at ¢ = 0°, it would decay to a
value of about .927 at 90°, .860 at 180°, .798 at 270° and .739 at 360°. These
values would not explain entirely the x-y asymmetry that is observed in the results.

In order that the y-directed field at the antenna will greatly exceed the
x-directed field, the (g X ﬂ) contribution, which is the predominant one for the TEM

mode, must be primarily from the portion of the cable near ¢ = 0°, i.e., the contri-

butions from that region must be more heavily weighted than those from other angular
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regions. Although attenuation could play some role in that predominance, it is
unlikely, as indicated above, to play a major role. The relative phases of the
contributions from the other portions of the cable might cancel out the contributions
from these regions in such a way as to leave the predominant contribution from the ﬂ

region near ¢ = 0°. If that occurs, then that would explain the observed predominance

of the y-field.

In preliminary results presented a few months ago, this same asymmetry was
observed, except that the z-component was even smaller relative to other components
than in the present results and the y-component was larger compared with the x-
component than in the present results. It was suggested at tha time that the pre-
sence of an additional mode, subsequently removed, could be partially responsible
for the asymmetry. If that was true, then the removal of that mode did not com-
pletely remove the asymmetry. Moreover, the method of summation of the contri-
butions around the cable slots was changed since those results were obtained and the
asymmetry still persists. Hence, barring an error in the computations, it must be
due to some features of the source model itself,

In the numerical results for the illuminating fields with ground reflections
(Subsection 11.4.1; Tables 11.1, 11.2, 11.3 and Figures 11.9-11.16)the same relative
orders of magnitude between components is usually observed qualitatively i.e., the
x and z components are of comparable magnitudes and the y-component is about one
order of magnitude (about 20dB) above the x or z component. Without ground re-
flections (Figuresl1.2,11.4,11.7), the z component tends to be about 10 to 20dB
below the x-component and the y-component is again larger than the x-component, but

usually not as much larger. This indicates that ground reflections seem to enhance

the x-y asymmetry.




Evidently, the same mechanism is producing these asymmetries in the results
for the illuminating fields near the cable as is producing them at the antenna
location far from the cable. Hence, it cannot be explained by the differences

between the fields at the antenna, which are entirely far ione fields, and those

at the potential scatterer locations, which are near zone fields.

The"Upright Man" cases (Subsection 11.4.2; Tables 11.4, 11.5 and 11.6 and
. Figures 11.17 - 11.23 ) and most of the “Crawling Man" cases (Subsection 11.4.5;
Tables 11.13, 11.14 and 11.15 and Figures 11,36 - 11.39 ) do not exhibit the x-y
asymmetry observed in the illuminating fields except in the anomalous case ¢ = 270°;
where some of the y-components are lower than their corresponding x-components by

as much as 20dB. Otherwise, x and y components tend to be of comparable magnitude

and z-components tend to be below the x-components by between 10 and 20d8.
It would seem from the geometry that the horizontal field contributions
from the scatterer at ¢ = 0° and 180° should be pfedominant1y y-directed and that

-~ those from ¢ = 90° and 270% should be predominantly x-directed (since the scattered

e e e

wave appears as a spherical wave emanating from the scatterer center). Considering
the case of a scatterer at ¢g = 0° or'180°, the x-contribution comes from the fact
that the scatterer center and antenna are at different elevations and hence the
wave propagation vector for the scattered wave has a vertical component. This
produces an x-component of the free-space scattered wave field.

Without ground reflections, this x-component might not be as large as the

y~component. There would be only a y-component and a z-component if the antenna

i and scatterer center were at the same height and only a small x-component if the

3 .

1 height discrepancy were small. The ground reflections should favor vertical over

%

i horizontal polarization, since the effective ground conductivity is reasonably high
2 1 at 57MHz. The antenna and scatterer center heights are large enough to produce a
©

%

’ ~
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significant vertical component of the wave propagation vector for the ground-
reflected scattered wave which is vertically polarized on ground reflection. The
ground reflection of the y-component of the scattered wave is smaller because it is
horizontally polarized. The vertically polarized ground reflected wave contains an
x-component which is added to the x-component already present in the free-space
scattered wave, whereas the ground reflected contribution to the y-component is
smaller because it was horizontally polarized on ground reflection. All of these
effects are in the direction of reducing the predominance of the y-component in the
wave from a scatterer at g = 0° and 180°. The same arguments can be applied to a

scatterer at ¢ = 90° and 270° except that x and y are interchanged.
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11.5 Conclusions and Suggestions for Future Research

The range of parameter values for which results have been obtained is

extremely limited. It is not possible to draw sweeping conclusions about the
generic class of RF intrusion-sensing systems exemplified by the system we have
attempted to analyze on this project (or even about this specific configuration).
Because of time and cost limitations, it was necessary to confine ourselves to a

very specific configuration with tightly specified parameter values.

The electromagnetic effects we have investigated here are extremely com- !
plicated, involving near-zone effects and a scatterer with dimensions comparable to
wavelength, There are a number of parameters to which the results might be quite
sensitive. Among these are: constitutive parameters of the ground, which are
highly sensitive to the chemical and physical composition and moisture content
of soil; the constitutive parameters and dimensions of the "intruder" ( the
spheroidal model of which is an extremely crude approximation to a human body) and
the geometric parameters of the cable, small changes in which might have a signif-
icant effect on the fields illuminating the scatterer.

The decision was made early iﬁ the project to construct an analytical model
based on the concept of the plane-wave spectrum of an electromagnetic wave. This
was based partially on the fact that the scattering program we planned to use,
and did use, presupposed plane-wave illumination. The decision to use that partic-
ular scattering program, in turn was based on the following reasons. First, the
Barber scattering program appeared to be the best one available for the purpose at
hand, i.e., the best compromise between extremely accurate modelling of a human
frame, requiring absolutely prohibitive computer time, and an extremely crude bLut

highly inaccurate model requiring very little computer time. Secondly, the program

nad been used successfully many times and appeared to have been thoroughly checked
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out. Thirdly, we had insufficient time and resources to devise a different program
which would have allowed an illuminating field other than a plane wave.

Another reason for using the plane-wave spectrum concept was the desire to
inc]u&e ground reflection effects. For each plane wave in the spectrum, the simple
theory of reflection of a plane wave by an infinite boundary can be used.

For the above reasons, no apology is made for using this form of analytical
modelling. However, the negative aspect of this choice is the necessity for
performing two-dimensional Fourier transformation as the final stage of the
process. At the initial stage of the analysis, there was no way of knowing how
computer-time intensive that process would be. After it was too late to turn back,
it was found that (1) performance of the two dimensional inverse F.T. on the scattered
field spectra with enough points for high accuracy and with no approximations
reducing the number of points needed required a prohibitive amount of computer time,
(2) conventional F.F.T. algorithims available as packaged programs would not be of
much help and there was not time to devise an F.F.T. program that would fit our
needs. For these reasons the stationary phase method was used as a crude approxi-
mation. It probably reduces accuracy somewhat but also reduces the required computer
time very substantially and brings it within reasonable range. However, it is still
too high to allow enough computations for the very extensive parametric study that
we believe is needed to develop a really solid analytical understanding of the
behavior of RF intrusion sensor systems of this class.

A set of preliminary results were presented several months ago, together
with suggestions for ways to improve those results. Nearly all of the suggestions

were carried out in the extension of the contract that followed (and some other
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. ~ improvements not suggested were also made)* except for the suggestion that the é
] ' use of stationary phase might not be a sufficiently good approximation and hence ;
;‘ | should be replaced by a more rigorous method of performing the inverse Fourier 7
E. transformation. An attempt was made to follow that suggestion, but again there

was insufficient time to develop a new and possibly more accurate approximation

and attempts to use the rigorous F.T. method used to get fields in the absence

1 of the scatterer required prohibitive computer time. Hence we reverted back to the
use of the stationary phase method with only a minor modification just prior to the
contract deadline, in order to allow sufficient time to produce the planned
numerical results. These results were improved relative to the preliminary results,
but we are still not satisfied with their accuracy.

A recommendation for future research, which we plan to carry out in continuing
| ‘ work on this problem, is to devise an approximate method of inverse Fourier trans-
~ formation which will produce hopefully more accurate results in a much shoiter

running time per point. Once that is accomplished, we will re-run all of the
results in this report and also study-a great many more parameter variations.
Separation of the various constituents of the field((1) source field in free
space; (2) ground-reflected source field; (3) scattered field in free space; (4)
ground-reflected scattered field) in order to assess the effects of each part of

;f i the process will be one aspect of a future study. Another aspect will be an improve-

ment in the accuracy of the method of summing over the cable slots, which should in

turn improve the accuracy of the ratio of the fields at the antenna with and without

_ * A “field mapping" to determine the spatial variation of illuminating fields; removal
1 of a second propagation mode in the cable which was used in the earlier computations;
reassessment of the use of the stationary phase method; correction of an erroneous
value of scatterer radius; removal of all phase ambiquities in the program; improve-
ment of the accuracy of the analytical model of the field from the source,
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the scatterer. This problem was discussed in Section 11.4.6. It was the reason
. _we did not directly address the issue of target detectability in this report.

That is another task that is planned for the continuing work. As a final step,

we will present those results for which experimental comparisons are possible in

.- a form amenable to direct graphical comparison with these experimental results.
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Figure 11.31
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Figure 11.34
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Appendix I: KIRCHHOFF-HUYGHENS (OR STRATTON-CHU) INTEGRAL FORMULAS
— FOR FIELDS FROM APERTURES

The Kirchhoff-Huyghens Formula™™!

AS' in an unbounded charge-free, current-free linear, homogeneous, isotropic
medium (neglecting contributions from the aperture edges) is (see Figure I-1):
1 ) KR QJKR 3V
W e [ s e () - S el G
AS!

AS!

— e
4 >
Figure I-1
Geometry for Integral Formulas
; where
! AS' is the aperture area
ds' = dc] dcz = aperture area element, where 4 and gy are orthogonal
coordinates along the aperture
!(:) a generic vector indicating electric field vector E(:) or
‘ magnetic field vector E(:)
- 0 = origin or coordinates
r = field-point vector = zx + gy + Ez

P W Wy em e AT ey W

for the fields from an aperture with area

ks




-2

r' = source-point vector (on aperture) = xx' + yy' + Ez‘
> - -+

n' = outward normal unit vector

-

. 09 o9 )
= + +
veXar Yyt i

* 7' = normal derivative operator

v

3
I

-~
[[]

IR]
Note that

. _,:6 + 5p (1-2)

+-3

where r', position vector of aperture center =xx' + yy' + 22
0 + 0 >0 + 0

GK' = vector from the center ré to a point on the cierture
-

s wAy! Dagl S8t =% o3 S0t
30xp + Yoy + 2027l g 0
where (E], 22) are the unit basis vectors in the ¢, and z, directions respec-
tively, and n' is the coordinate in the n' direction (which is set to zero
->
along the aperture). '

Note that Eq. (I-1) applies to either the electric field vector E(:) or

the magnetic field vector E(I).




Another integral formula similar to (and equivalent to) Eq. (I-1) is

sometimes referred to as the Stratton-Chu integral formula {Stratton, p. 466]. \

!l

B = - 2 ([ as L (x B ) S I-3 |

r) = -z ff Lang(n'x H(r')) =g— (I-3a) |

b e e AS. I

oJKR
‘ + (8 x E(r) x v'( S Sh ) + (AE(r") (£—)] (1-3a)

ikR
L.  Hr) = -— l! ds* [jwey(R' x E(r')) E%T“ g
AS' :

KR
- (R x H(r')) x v ( S ) - (nH(r") ¥ (£—)1 (1-3b)

Where in Eqs. (I-3a,b) we neglect contributions from aperture edges
[Stratton, p. 469] and assuming volume current and charge densities to be zero.

We can easily derive an alternative form for Eqs. (I-3a,b) in which the
gradients are taken with respect to the field point (unprimed) coordinates

rather than the source point (primed) coordinates. We recognize that

jkR JkR
v V'(-e-r =°V(e—R—) (1-4)

. and

E(r'), H(r'), n' are all independent of the field point
> > > -

(unprimed) coordinates (1-5)
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Using Eqs. (I-4) and (1-5) in Eq. (I-3a,b), we have
t _
- kR
AS! J
kR
-9 (Ag ¢s' (A" x E(r')) Ep ) (1-6a)
' !
JkR
+ g dS'(_ﬁ".E(_\:')) %— )}
A )
) jkR
Hr) = gk ¢ U as* Jue (A" x E(r')) S (1-6b)
A )
ik
-7 x ( ” ds*(a' x H(r')) e—JR—R)
| AS"
=~ jkR
+ 9( g ds' (nH(r*)) —e—JR— %
A ]
3
By
5
]
I-4
q ‘
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Appendix I1: PLANE-WAVE SPECTRAL REPRESENTATION OF FIELDS

The representation of electric and magnetic fields as a superposition of
plane waves is amply covered in the 1iteraturee'}’A'2 It is a well-established
technique for dealing with arbitrary electric and magnetic fields in a homo-
geneous medium. In principle, it involves no more than the three-dimensional
spatial Fourier transformation of the field vector or one of its components.

As in Figure II-1, consider a right-handed rectangular coordinate system
(x,y,2) with unit vectors (x,y,2). Assume harmonic time dependence g dut,
The vector r = xX + yy + 22 is the position vector referred to the origin of
coordinates 0. Electric or magnetic field vectors are denoted generically
by !(:) and their three-dimensional spatial Fourier transforms by z(g). The
vector 5 is the propagation vector associated with a plane wave propagating

in a particular direction. The angle between r and 5 is denoted by v.
-

(x,y,2)

x Figure II-1

Geometry for Plane-Wave Spectral
Representative of Fields

The propagaticn vector is denoted by

ISBRT D -

=
[P ¢




k- k;'. (ll'l)

- N

, B “s .. . - e N
(RPN ; sorapagetion comtant of the wedian, viiere o = anyular frequonsy,

v Tovetacity of clnciromagnetic waves in the madive, which in the ca: e of
frav-npase s ¢ow 3{107) weter/second and which in geacral could be real {in a

naa dissipative cadium) or cowplex (in a dissipative modiuwg, ¢.y., the eacth),

cied 218 the divection vectoys, Ggiven by

57 B+ 2R, (11-2)
-> -> + £~
(VRN

:'-"A+’>A/
By nX PRy
and where the quaniities in Fq. (11-2) are given in terms of angles by the

relationships

B, = sin 6, cos (11-2-1)"

X P 9

£, = sin 0, sin¢ (11-2-2)°

')i
fh Fﬂy&? 1 “z ©sin 0 (11-2-3)°

T

ey wif0ce < b
Po=cos G, = b -Jl - pe . " (11-2-4)"
F4 : h T A S

0, = spherical palar aigle of propagation direction (11-2-5)'

A5 .,

e Ny
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bl 0

il i
b

A )
i Ty e .
’ [N

¢B = azimuthal angle of propagation direction (11-2-6)°

and the plus and minus signs correspond to upward and downward propagation,
respectively.

Integration over all direction angles results in the representation

W) = vped) = [[ o gy e

ik, o ~iklBplz
{e v- (gh)

Jk(8,lz .

where dzgh = d8, d8,, o = gx + gy, v_(8,) and V (g,) denote the two-dimensional
spatial Fourier transforms for downward and upward propagation respectively
and where the z-component 8, has been eliminated in the arguments of V_ and §+
by invoking the relationship (II-2-4)', by virtue of which B, can be expressed
as a function of By and By.

By differentiating Eq. (II-3) with respect to z and setting z equal to
zero, we obtain

0 L ~
V(.0) = [[ g e T (g,) + V(g (11-4a)

g——8
[N
~N
Cde
g§§

a T, dkeye .
Caz (o] =3k [[ gy €2 21s,1 0,08, - Vi) (11
<> 2= - -

~jkBpp
It is easily shown from Eq. (II-4a) (by multiplying by e ™ ™ and inte-

grating on x and y) that

i e A At e




' (57 2 2 -Iky-g
V() = [ If d%p(]8,]V(p,0) - AT (2’2)]z=0}e
- (11-5a)

(£)2 7, . v - k8
o018, 1¥(0,0) + 3 [ =3 (p, e o N

o

=i
=
g\/
"
+
2331
~N
&“—*ﬂ

(1I-5b)
where dzg = dx dy.
An alternative representation equivalent to Eq. (II-3) in terms of the
spherical angles of the wave vector and the spherical coordinates of r (given

by r, 8, ¢) is:

2w /2 -
. ) % jkr cos vy
v(r) i dog { J dog sin 6, U_(8,, 05) €

m ~ .
. v jkr cos y .
+ j dog sin 05 V,(6,, o) e (11-6)
/2
where
€O y = COS 6 COS B, + sin 8 sin 0g cos(¢ - ¢B) (I1-7)
and

V;(BB. QB) = tv;(-Bph)]B)fS'lneBCOS(ﬁs

By=sinessin¢6
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Mooandix tET: PLANE-WAVE SPLCTRAL REPRD ‘rNiAITU
O THE FIELDS FROM AN APERTUR

.~ . . o .. \
the sphovical wave fimction WoToappe raring in Lys. (0.1), (1.3 +,0)

\

aid (1.6.a,b) hos a wodified plane~-wave spectral ropresenlation [Fros a nod

| ification of Sirutioa, Chapter IX, Egs. (23), (24), (25), (26), vp. 577, 572 ,
7 . l
ki " o e o
‘ e’ . JK pos , . JkR co3 0] | ,
iy J a;s dné sin ok e B F(ﬁ, 5) (116.1)
1 0 v
., whiare it is recalled that R = ]Ri =lr - r'!, where (Ué,gg) are the ssherical
¢ coordinate direction angles of I§ referenced to a z-coordinate in tiie direciion
b of R, and where**
%
( ] 1
1 8] =1 4+ c Y e o
', f(*;” _B) 2[_1 cos |f> t J’kRJ
. jkR cos Of ik .R . k. R oo JusL.R
Noting that od R co Ou = eJPE R , it follows that V(eJl¥‘L) = Jk§ eJ“ﬁ’R
~ and hence, taking the gradient of (III.1) (differentiating under the integral

sign) we have

2. u"
; FJkR . n|4€{fﬁ _ Gk | i doy sin 0} ----
R R 2 ? ‘
0 0
3 A\'
i eJkPCOS O ¢ @F(Q=B)ﬁ%EVf(§’ R )} (111.2)

*The relationship appearing in Stratton requires the use of conmlox values of the
components of 8, the propagation vector, for its inplenentation. The present
form, confining’ itself to real values of the g components, centains a dependence
on R . Hence it is a wodified plane-wave spedtral representation where the com-

¢ pOHﬂd waves have phasc factors ka ‘R as do plane waves, but are weighied with a

factor that is denendent on the quce coordinates. n
*xThe dorivation of (II1.1) is easily accomplished by recognizing that o.?_ d\ﬂ
sin 0! eJkRCOq OL = j sinkR. Differentiation of sinkR then produces the® r=su1t

! cos kg =) sin Oé Jeros Oﬂ{1kaR cos OB} Adding cos kR and J sinkR,
' dividing b °R aﬁd noting that the integrand is independent of ¢v , implying that

L. ~ [ d¢é = 2x, we obtain ITI.1.

' )

0

I11-1
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Revising (T11.1) and (1I11.2) to includ> the sepuratioi into urward
and demwavd wave s and LransfTorming from the spherical coordinabe system with

z-axis in the R dirvection to wur ground framz, we have

[

JkR ki, <R
(9 () = jl [J dpe 7 f( LR) (111.1)"
N 4 ) B B
i3
jkR jkR P jk3z R ; R
(e o g (€70 L Gk) 5, S o 1. =
v \"R7) "~ v L T d", € {f(-‘:;-‘i)n‘iz’ 2(3kR)?2 R }
+
(111.2)"

where g o= gt Z |6,

We now simplify the notation by denoting f(§+, g) by * , neglect the

R )
k' term in (III.2)‘k, neglect the field contributions duc to line currents

around the aperture edge, assume that the ambient medium is freé space, and
then substitute (II1.1)' and (I11.2)' intu Eqs. (I.3-a,b), interchanging the

ovder of integration. The results of thesc owerations are:

IO

(j ko)? i 2 c jk-‘zm.-[s Ny \ t
B - [ gy ] e (-Zolut x #(y))
-y [\S'
+ S ] ' ey b .
- B x(n" x E(r")) - (n"-E(r")) p-T0 ¢ ( 111.3a)
|
|
* This term is not included in the analysis in Sections 3 and 4, but it
is approximately accountod for in the computations. It is negligibly
small except at positions cxtremely close to the source.
T{1-2

. .
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L
roprasent Uk

vhore ZO il

)

’a

0
where ¥ = J— =
“F o

= vaye dmpedance of free-space and the @ oand - supceoripls

dand doaumsavd propagation, rospoctively.

(k3" ik pn
M RV Shol Y S ey
R PR F " JJ ¢ Wolnt = Elr) )

- /‘\S

"

t

Sy E f

S (0 % (') - (R (111.30)

1 . .
3T T owave admittance of free-space and + ard - superscrinis
0

have tha same meaning as in Eq. (I11.3a).

e now expross E(r) and H(r) in the forir (11.3) as follows:
=

E(r) -

g(g)

where

and where, from

A

> >

(II’qd)

=1 (r) + () (111.40)
= d2 B e\]l\ (nh.gﬂﬂzl?) C
J >N sn

Eqs. (II1I.3a,b),

L(_j_f‘.o_).z.
) - AL[ ds

e'jko(ghtiiﬂz‘)'I'

L =700 x H(r*)]
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Luoimportant point arises ot this juntiuve. It is nuecossary thac E+(5h)
B

and ﬂ+(mh) be interralated through the Marwell equations, i.e.,

- + ~

E ) 7 -2l x H G ) (111.6a)
A(s) =¥ [8%x E (i) (111.6L)
_.)_t 5 0 > * -)__ ‘).h : T
W E(g) = 0 (111.6¢)
e N
G- e Il({,h) =~ 0 (III.Od/

Since Egs. (II11.6a) and (IT1.6b) imply Egs. {(I'1.6¢) =nd (Lil.6d),
respectively, and Lq. (111.6a) [wilth the aid of (UIT.Gd)] iwplies Eg. (I11.65),
it follows that if Eq3. (I11.5a,b) are consistent with either Eq. (II1.62) or
(I11.6L), then Eqs. (I1!.5a.b) are consistent with the entire system of {gs.
(111.6a,b,0,d).

To Lest this consistency, we apply the (—ZO .} X ...) operation to Egs.

(Ti1.5)-(111.6), resulting, after some manipulation (using the vector identity

{ifr-4
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ax (b xc)=nla
> -, -w ’ -

. C) - C(d .
> o2

. L L b + .
Q) and the faci that ¢~y - =0, 0 - - = 1,
— ’ r 4 >
in thy expression
. Lk
Lo (i k0)2 -3k ert
{ o . " > > [ (Ko
- - a ) o o2 dS' o (. TS
ZO ‘3 X .|,\1+_\ ,.h) Gy J ¢ H /'o'” X ';” J 1
AS'

PR 4

- L NTHE (UL

Expressing E{r') and H(r') in the last square-bracteted quantity in Eq.
Y o>

(1I1.7) in terms of its spocival representation, we have
"y + [ ]
-2 [B=x H{r")] - E(r")
0" > - >
~

I e jkoi{t‘f'[ 7t an
T Troth X

> - R
Bir) - By (o)) (111.8)
khen we evaluate the integral
. - 4 ;
{ e (3=)r
I = ds' e o7 (111.9)
J
AS'

wiich arises in Eq. (I11.7), if AS' wevre an infinitely lorae surface. then
| 3

1o s(as - g (111.10)
which implies that
f_".' _-'B.t (1711.11)

1l
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,osince thoe

Vot

(F11.11) hotds, then the RHS of Lg. (110.8) we

is fwpiicd by the plane-

1 1q.
venishing of e intogrand on the RUS of Fq. (111.8) i
Thus, the LIS of tq. (711

sh,

weve Mo Tl cquation (111.64). .6) wust also vani

which duplics that the RUS of Eq. (I11.7) ds cquivalent to £4(ﬂh) as given by

Eg. (111.5a). 7This completes the demonstration that Eas. (fI0.52,b) ere

consistenl with Fqs. (1I1[.6a,b,c,d).

0f course, the "jafinitely large surface" assumplion cn which tg. (111.70) )
is bosed is mot really valid here. (I1.32,b) (cni which this
entire analysis is based) to be Lruly valid, it is necessary that th2 surface

llowever, for Las.

bo closnd.  In the present model, the fields are assumed to be negligibly
siall except on the slots; howevar, the surface still inclides the cable area

outside the slots and thz integral 1 of Eq. (II1.9) still can be cansidered

.

as an integral over a clesad surface. Such an integral witl vanish unless

g't is equal to ﬁi; hence Eq. (IT1.11) holds.
Alsc, as remarked carlier, we have neglected , in the above analysis, the

JkR
;@y toerm arising in the gradient of % . This term is only significant at
R

It will be included in the computa-

positions extranely close to the source.

tions.
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Appendix IV: ELECTROMAGNETIC WAVE PROPAGATION ALONG A COAXIAL CABLE

The theory of electromagnetic wave propagation along a coaxial cable i{s
well-known; consequentiy we will invoke standard referencesA-3 ip developing the
theory in the context of the specific problem that is the subject of this
report.

First, consider the modes of propagation down a guiding structure with
circular cross-section. Using cylindrical coordinates (r", ¢", z") and cor-
responding unit base vectors (E“, §", g"), we have in general a set of TE
(transverse electric) and TM (transverse magnetic) modes of propagation. The
fields between r" = a and r" = b, where a and b are inner and outer radii
respectively, can be expressed as a superposition of TE and TM modes. The

field vectors have the forms (where harmonic time dependence e'J“‘t has been

assumed)
E(I’",¢",Z“) . ~ "
- il o Jk (k ) 2
= Z {EI(‘EE)(Y'") eJM . e 0 Zn TE (IV-1)
K2 | M T
+ C(EM)(F“) ejwn . ejko(kzn)mzu}
N
where in general nH
Kan = Kan/g
(kppdre = (kznpdre * dlap)ye
™ ™ ™
and where

Iv-1
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(Knr)E * & T * T
_ ™ o' pn’TE pn‘TE
™ ™
(“n)TE
~ ™
(op)ye = Tk,
™ )

(vpn)TE = phase velocity in meters/sec for TE“ mode
(vpn)TM = phase velocity in meters/sec for TM, mode

(an)TE = attenuation in nepers/meter for TEn mode

(an)TM = attenuation in nepers/meter for TMn mode

e
7g from Reference A-3, Chapter 3, we can write the general forms of the vectors
EI? (r), as follows:
nH
TE modes [E(zf.‘)(r") = 0]
TE, = “u (n) " ") n) "
cre(rn) = g E(r) + g BN (r) (1v.2a)
E;r‘ﬁ(ru) = !;u ﬁ'(.lfl\)(ru) + $u nén)(ru) + :%ll H'gzl)(rn) (IVZb)
where

Iv-2




- ia
(‘ A

P
4

———————a . 4

—— i —— e =

TE TE

- Wg.'.')(r“) <A 9k, ) 48 "N (k) rt)

~

Jk TE TE
| -( )(T") = T_ZA [A n J;‘(kcn u) +B n N (kcn P“)]
{ cn
k, TE TE
(n)(rll) = J n Zn [A n Jn( cn ru) + B n N (k )]
p k
cn

f,(,!?)(r") S ﬁ(n)(r")

—(n)(ru) 1 ﬁr(‘::)(ru)

— - ’TE;
Y
w
and where
P =kep rt
Jn(kcn r') = Bessel function of first kind and order n
‘
Nn(kcn r") = Bessel function of second kind and n*" order
3
TEn kzn
Y = wave admittance for TE_ mode = ——
w n W 0
—_ k,, and k,. are given below Eq. (IV.1)

Iv-3
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- - ~ _ A2 = ~
P 1 ken Kea = Kzn l(o kca Kzn ko kcn
g = A
$ ca ™ %o y%cac ca yCScac
:
s _ )
g o a=Ccac _ o I %z _ complex dielectric constant
] cac = Te_ ca " we,  of cable material
K.
F
)
P €ca
e €a * T where €ca = Permittivity of cable material
s 0
i Oca = conductivity of cable material
|
TE
- A " = amplitude of Jo(p) term of TE_ mode
TEn
4 B " = amplituce of Nn(p) term of TE, mode
~
!
d J (p)
* 1 "y - n
| Jn(kcn r) ( dp =k
- P~%en
! F
d N_(p) '
] "y = n
1' Nn(kcn r ) ( dp > =k "
| =Ken

T™ Modes [ﬁin)(r“) = 0]

- EI?(Y.") = _En 'E"(‘n)(rn) + ;;u ‘E‘én)(ru) + éu 'E’glr‘l)(ru) (IV.Sa)
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Em(rn) = Eu ﬁi”)(rn) + §u ﬁ‘gg)(rn) (1v.3b)

where

£ () = AT Iolkgy T + gn N, (ke ™)

£ (er) - %:—"IATM" kg r) + 5" Ny ke, )]
B0 ) - %({? A" 3fkgy ™) +B D Ny (ke ™))
ﬁf.?)(r") = -Y:M" E’é‘.’,')(r")

—(n) n = TMn (n) "

Hpu (r") = ¥, " B pa(r)
where all quantities used in Eqs. (IV.3a,b) were defined below Eqs. (IV.2a,b)
with the exceptions

™
A "= amplitude of Jn(p) term of TM_ mode

™

o
3
"

amplitude of Nn(p) term of ™M, mode

TMn w t-:ca
Yw = wave admittance of TMn mode = 'F;;'
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The TEM (standard coaxial) mode [Eif)(r") = ﬁﬁﬂ)(r") = 0]

At low frequencies we can limit propagation in a coaxial line to the

transverse electromagnetic (TEM) mode, which has the form

“w gln - Vo Jkea2"
E(r“. o', 2%) = L‘" Eru (r*) = _P;" We (Iv.4a)
)
~ ~ Y.V Jk .. z" iy
" M WYy o A4 (n) Ny - M cad o ca
ﬂ(r s 9y 2 ) 2 H¢u (Y' ) 2 We (IV.4b)

where k . is derfined below Egs. (Iv.2a,b) and where
a = inner radius of cable
b = outer radius of cable

V_ = voltage between r* = a and r* = b

Yca =\/EE_5- = wave admittance of cable material
Equations (IV.4a,b) constitute a complete solution for the TEM fields.
Equations (IV.2a,b) and (IV.3a,b) require the imposition of boundary con-
ditions at r" = a and r" = b for completion. In the actual cable that is
used in the configuration under study on this project, the inner boundary at
r’ = a may be well approximated by a perfect conductor. The outer boundary
at r" = b, since it contains the slots, may be approximated as a perfect
conductor except in the slot region. An exact analysis would require con-

sideration of a boundary, that is not cylindrically symmetric, i.e., partially

V-6




free space.

Such an analysis would not be feasible within the time limita-

tions of the project; hence, the fields are being approximated as if the

cable had perfectly conducting inner and outer boundaries.

The result of these approximations is the condition that the tangential

P

electric fields must vanish at both r"

£ ) = 20w = EM(a) = B o) = 0

for both TE and TM modes.

= a and r" = b; herce,

(1v.5)

Applying the conditions (IV.5) to Eqs. (IV.2a,b) and (IV.3a,b), we obtain

the following results:

TE Modes

TE

Ji(k__ a)+D "

ncn

TE

n
cn b) +0

JA(k

‘where

TM Modes

n
Jn(kcn a) + D

- Inlke

NA(k

TMn
n b) + D N (k

cnd) =0

Nr"(kcn b) =0

N (

n cna)'o

ntkep B) =0

(1v.6a)

(1v.6b)

(I1v.7a)

(1Iv.7b)

Iv-7
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g where

From Eqs. (IV.6a) and (IV.6b), we obtain the conditions required to
determine kcn for TE and TM modes respectively. Dividing Eq. (IV.6a) by
Eq. (IV.6b) and Eq. (IV.7a) by Eq. (IV.7b), we obtain: '

For TE modes

| Jr"(kcn a) N"‘(kcn b) - J"‘(kcn b) N"‘(kCn a) =0 (Iv.8a)
i and for TM modes
Jn(kcn a) Nn(kcn b) - Jn(kCn b) Nn(kcn a) =0 (1v.8b)
~ In the configuration under investigation, a and b are extremely small
*;34 compared with wavelength. Under the very plausible assumption that kcn is
IR
<38 of at least the same order of magnitude as kO or at the very least no greater
tf than one order of magnitude greater than ko, a study of parameter values

5 indicates that the argument kep @ and k.. b appearing in Egs. (Iv.8a,b) are
k. all very small compared with unity. Hence the first few terms of the power
1 series for the Bessel functions with small arguments can be used to put Egs.
' (Iv.8a,b) in a form where they can be easily solved for Ken®

Also, it follows from either Eq. (IV.6a) or (IV.6b) that
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Lo o bial aa ek adt £ e

TE Iplken @) (ke b)

p MNa. L C0 oo (1V.9a)
Nplken @) Nplke, D)
and from either Eqs. (IV.7a) or (IV.7b) that
DTMn . Jn(kcn a) . Jn(kcn b) (1.9b)

NH(ICH a) o N;(kCﬂ b)

The fields on the slots are those corresponding to r" = b. Since those
are the fields that must be evaluated in our problem, we will focus on them
at this point.

From Eqs. (IV.2a,b), (IV.3a,b) and (IV.%,b), we have, for the fields at

r" = b:
TE Modes
) ATEn
Hz.’.‘ (b) = Nk L,(ken b) (1V.10a)
T - &l
A e = €M) - ER)(b) = 0 (IV.10b)
T .-
k
ﬁé.’.‘) . Wec—r‘%y:—;::-é—z-’lzn(kcn b) (1.10¢)
cn
1 u(n)
Ef,[.‘)(b) .~ Hé.'.‘ (b) (1v.10d)




where

Ln(e) = d (o) Ny(o) - No(p) J:(p)

TM Modes
}
T e) = T ) = HH ) = HDb) = 0 (1v.11a)
™ Sk i
B0 (p) = 2 (k,, b) (IV.11b)
n'“cn k
cn
TM
‘(“)(b) ’(“)(b) (1v.11¢)
f
f hd The Bessel function sem’esA-4 have been evaluated to fourth order in the

argument p, based on the observation that (kcn b) << 1 in our problem. The

results are:

R

"f Jlo) =1 -(5% )2 + 7} (5 ) (IV.12a)

”

o) =80 -3 (8% + L (5% (IV.12b)

4

'- 2 2
- ! () = &G (1 - &5+ £} (Iv.12)

For n> 3




~ ) =-5+3(5)°

By =3 -3(812+5(5)h

l
2 4
‘ Ip(p) =5 (1 - B+ f )
For n > 3
Jc()zg}_{ é_?_z"'__z_l%;_,_ (n+4)4 )
Pl T on N+ A(Zn ¥ n+
No(o) =2 an G+ vbu (o) + 21§02 -3 (5%
=20 (80 - (80243 (54
+Iy+ (5220 -y + 5 (5 - D
where y = 0.5772156
: 2
g N](p)"‘"%

M) = -2 (2 + (5D

Iv-n

(1v.13a)

(Iv.13b)

(IV.13c)

(Iv.13d)

(Iv.14a)

(Iv.14b)

(Iv.14c)




Nolo)

s ' Ny (o)

For n > 3

| i N: (o)

' k Ly(p)

i - Ny(p) =

R

(Z)%(n- 1)+ (n- 202082+ L0300 (8%

(Iv.14d)

4 [—

I}

2y +dan (5rem e+ 208 -3 (5

ki

"

Lin (80055 +3(50%+1 ’

+

(352 + (5 a2y (1v.152)

- _2_2 (IV.15b)
o
1 2 13
_F(E) (Iv.15¢c)
< (2™t v (0 - 212 - n)(§)2
GE 325(4 =) ()4 (1V.15d)
From Eqs. {IV.12a) through (IV.15d), '
= Jy(e) Ny(o) = d3(0) Nofe) = & (1v.162)
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L](p) = ‘J](D) Ni(p) - J]'(o) N](D)

[H

Za-(§1Fe305)h (1.16b)

Ly(p) = 35(p) N5(p) = I3(0) Nylp)

n

Za-708% (1.16¢)

For n> 3

i

Lplp) = d (o) Ni(p) - Ji(p) N (o)

2 1 2 ] 4
=2 .1 (2,32, ()% (1v.164)
e (n? - 1) ? 2(n® - 4)(n? - 1) 2

The forms (IV.12a) through (IV.16d) are those actually used in the com-
puter program. In view of the small values of p appiicable to our problem,
these forms are adequate approximations for these functions.

An aspect of this analysis we have not yet discussed is the determination
of the attenuation ay, for each mode. The usual analytical procedure for the

A-3 (a) Ignore the

case of nearly perfectly conducting walls is as follows:
departure from the perfectly conducting wall case in calculating the fields
inside the (possibly lossy) dielectric; (b) Consider the actual conductivity
of the wall material and calculate the "surface impedance” along the walls;
(¢) ba]cu]ate the "surface current" Js = n x H, where H is the loss-free

- -+ > -
magnetic field at the surface and n the normal unit vector; (d) Using the

surface impedance and surface current, calculate the power loss per unit lengt*
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of line due to ohmic losses along the wall surface; (e) Using the Poynting
theorem, calculate the losses due to the nonzero conductivity of the lossy
dielectric material, assuming of course that the conductivity is nonzero; :
(f) Add the power loss per unit length due to both mechanisms (d) and (e) and %.
calculate the resulting total attenuation o, . %
It was originally planned to carry out the procedures (a) through (f)
above for each mode and thereby evaluate the attenuation a, by purely
analyticai means. It was decided later that the degree of approximation of '
those calculations was even greater than that associated with the evaluation
of the fields in the cable as if the walls were perfectly conducting. Also,
in the actual cable, the slots should play a prominent role in the introduction
of another source of energy loss. Obviously these slots will also perturb the
magnitude and direction of the field vectors, but that effect is probably not
as severe as the degree to which they will affect the attenuation. Al1 of
this is speculation of course, but based on such speculation and the computer
time and other limitations on the project, it was decided to use empirically
determine” values of attenuation. That is what was done in the computer pro-
gram.
Another issue that has not yet been discussed in detail is that of the
determination of kCn for each mode. This can be determined theoretically by
solving the equations (IV.8a,b) for kcn' We invoke the assumptions:

Ik a] << 1 (IV.17a)

cn

'kcn b] << 1 (Iv.17b)

thereby justifying the use of the approximations leading to Eqs. (IV.12a)

Iv-14




- through (IV.15d) in constructing the expressions on the left hand side of

Eq. (IV.8a,b). We then construct these expressions and truncate the resulting

. | series beyond the fourth power in kcn’ The results of these operations are

two quadratic eguations in kgn, as follows:

. TM Modes
b ! 4 2 _
5 1 An kcn + Bn kCn + Cn =0 (Iv.18a)
f’ E TE Modes
\ 4 2 -
: Dn kcn + En kcn + Fn =0 (Iv.18b)
; where

A = T%§ {2 wn( % )[a4 + b4+ 422 2] + 32 - b4y

i ()
d
\1
{
j B, = 3 ((b% - a2) - (a% + b?) an( 2 )}
J - on( B
! Co = on( ) )
i D, = a2 b2[(a? - b?) + (a? + b?) an( 2)]
| E, = -[2(a* - b%) + 2% b2 an( 2 )]
‘ i F, = 16(a? - b%)
IV-15
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-33]%- (a2 + bz)[a4 + b+ 822 b2]

- 1-]7‘.—(34 + b4 4 4a2 bz)

a2 + bl

o5 (2 + 63)(a% + bt

2, p2

a

IV-16
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Forn> 3

. 1
" 32n(n? - 4)(n? - 1)(ab)"

» b A

——— {(bZn - aZn) n2(a2 - b2)2 + 3"(&4 - b4)(b2n + aZn)

+ 2(a4 + bY + 422 bz)(b2n - azn)}

B = > 1 {(aZn + b2n) n(aZ - bZ) + (bZn - a2n)(a2 + bZ)}
n 4n(n° - 1)(ab)"

] 2n 2n
C =——[b" - a°"]
n n(ab)n

i 1
N 32n(n? - 4)(n° - 1)(ab)"

{\ i —— {(bZn - aZn)[_n4(a2 - b2)2 + ]0"2(64 + b4 - a2 b2)

raEon e

+ 822 b2] + (62" + a2M[nd(a? - b} + an(a? - bH D

5 g,

R

."‘ ' E =-ng + &2“ - aZn)(aZ + b2)
3 n n 4(ab)"

- . 2
3 Fn -Nn Cn

Equations (IV.18a,b) can be solved for kcn' The solutions are:

I ——

IV-17 Z
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-B_+ /B - 4A C
n3y®n n“n
=K (Iv.19a)

(k

cn)TMn mode :

2
-E_* /E - 4D F
(%Hmnmuzij"‘ A0 (1v.19b)

7,

A small program was written to implement the calculations embodied in Egs.

(Iv.18a,b) and (IV.19a,b). From the kcn values and the equation

k. = k¢ - k2 (1V.20)

we can determine the values of kzn’ the complex propagation constant for a
particular mode.

Since the real part of kzn is w/vp, where v_ is the phase velocity, and

p
the imaginary part is a portion of the attenuation a, (it does not include
attenuation due to wall losses), it would seem that the calculations repre-
sented by Eqs. (IV.18a,b), (IV.19a) and (IV.20) would be sufficient to deter-
mine the propagation and attenuation (exclusive of wall losses, discussed
elsewhere) properties of a TEn or TMn mode.

In the numerical computations presented in this report, we have not used
the above formalism to obtain the propagation constants kzn. Instead, we
have used empirically determined values of the phase velocity and the attenua-
tion, which circumvents the need for these computations.

However, the computation of both phase velocity and attenuation for each
mode directly from the theory is quite feasible and simple to carry out. If

there were justification for carrying out these computations in a practical

e A A T E T N R




problem (i.e., if it were known that a number of higher order modes were
propagating and if their relative amplitudes could be determined), it would

be very easy to add this capability to our general computer program. At the
relatively low frequencies of interest in this particular problem, most of the
higher order modes would be highly evanescent and would contribute energy only
from those slots near the power source; hence, they would not be very important

contributors to the fields incident on the scatterer or the fields at the

antenna.
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